首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluated the effects of dietary supplementation of organic acids blend (OAB) alone or in combination with essential oil, Lippia origanoides (OAE) for Nile tilapia fed supplemented diets for 30 days. Fish (1.1 ± 0.04 g) were fed control (Control), or OAB 0.5% or OAB 0.5% + essential oil 0.125% (OAE) respectively. At the end of the experiment, samples were collected for de hemato‐immunological, histological analysis of the intestine and liver, as well as microbiology of the intestine. The pH of the diets supplemented with OAB and OAE reduced 0.92 and 0.19 respectively. The growth and FCR were unaffected by the treatments, but survival was significantly higher in the OAB treatment. Fish fed the OAB diet showed reduced concentration of total heterotrophic bacteria and Pseudomonas sp. in the intestine. Increased glucose in fish fed OAB and high number of circulating monocytes in fish fed OAE diet were observed. The anterior intestine of fish fed OAE diet showed larger number of goblet cells and increased villi height. The diet supplemented with OAB, mainly, improved the intestinal health and survival of tilapia juveniles and can be used in juvenile production.  相似文献   

2.
We used spectrometry to study variation in the contents of minor (B, Cu, Fe, Mn and Zn) and major essential elements (Ca, K, Mg, Na and P) in the muscle tissue and digestive glands of Octopus vulgaris after 1, 2, 4 or 8 days of starvation and in fed controls. The contents of the major essential elements remained constant during 8 days of starvation. Na was the principal element found in both tissues, followed by K, P and Mg. The contents of the minor essential elements were higher in the digestive gland than in the muscle tissue, with increased contents of Fe, Mn and Zn (p < .05) during starvation, confirming the high capacity of this organ to accumulate trace minerals. In muscle tissues, B, Fe and Mn contents were lower and Cu and Zn contents higher, in starved animals than in fed animals (p < .05). Significant negative correlations between the digestive gland index and the contents of Cu, Fe and Zn suggested that the loss of weight of the digestive gland during starvation is responsible for this increase in mineral concentration. This and further information on variation in mineral content will help to optimize performance of diets formulated for the octopus.  相似文献   

3.
Diets incorporating different levels of corn gluten meal replacement using biofuel algae or Spirulina protein at 0%, 25%, 50%, 75% and 100% were evaluated for larval/juvenile stage of Nile tilapia (Oreochromis niloticus). Fish averaging 0.02 g were divided into groups of 50. There were three replicates per every dietary treatment that were fed one of six diets for 11 weeks. Corn gluten protein was replaced with algae on the protein basis. All diets were supplemented with 1.5% lysine and 0.5% methionine. The experimental diets were formulated to contain 37 ± 2.8% protein and 14 ± 4.3% lipid in the form of fish oil and soybean lecithin (phospholipids source). The results indicated that algae positively affected feed consumption and fish growth up to the 50% replacement and then performance was depressed. Significant differences in concentration of individual minerals (Al, Fe, Zn and Cu) in the whole fish body were found. Mineral composition of algae might have affected growth when diets which contained more than 75% of plant protein were replaced with microalgae. These findings suggest that up to 50% of dietary corn gluten meal protein can be replaced with microalgae which significantly enhance fish growth.  相似文献   

4.
This study investigated the effects of dietary inulin and Jerusalem artichoke (JA) on intestinal microbiota and morphometry of Nile tilapia fingerlings. Five treatment diets were designed to supplement inulin at 0 (basal diet), 2.5 and 5.0 g/kg, and JA at 5.0 and 10.0 g/kg. Nile tilapia larvae were fed experimental diets from the first feeding through the fingerling stage (84 days). The cultivation‐dependent technique showed that dietary inulin at 5.0 g/kg and JA (at both levels) increased lactic acid bacteria and Bifidobacterium spp., but decreased Vibrio spp. (p < .05). PCR‐DGGE targeting 16S ribosomal RNA gene revealed that dietary inulin and JA generated different profiles of microbial community compared with fish fed a basal diet. Compared with fish fed the basal diet, a greater intestinal villi height was observed in fish fed 5.0 g/kg inulin and JA at both levels (p < .05). A larger relative goblet cell number were observed in the anterior intestine of fish fed 5.0 g/kg inulin or JA (p < .05). Overall, dietary inulin (5.0 g/kg) and JA (5 and 10.0 g/kg) since the first feeding had effects on modulating the intestinal microbiota and morphology of Nile tilapia fingerlings.  相似文献   

5.
This research involved testing the replacement of corn gluten protein concentrate in the diet of 1.5 g Nile tilapia with biofuel algae‐based or algae supplemented with phosphorus diets. Experimental diets were formulated to replace 50% of the gluten meal protein in the control diet with biofuel algae protein (Alga50) or Spirulina (Spirulina50) protein. In addition, dicalcium phosphate (P) was added to the Alga50 at a concentration of 3.8% or 7.74% to mitigate aluminium (Al) toxicity and designated as Alga50 + P, and Alga50 + PP respectively. After 9 weeks of the feeding experiment, fish fed diets supplemented with P, Alga50 + P and Alga50 + PP differed significantly (< 0.05) with respect to the feed conversion and protein deposition from the control. The mineral composition of the fish body showed a decrease in levels of Al and iron (Fe) due to the P supplements. The mineral composition of the faeces indicated that Al and Fe were excreted in the faeces and were not accumulated in the fish body. The effect of dicalcium P supplementation on the neutralization of Al in the diet resulted in improved fish growth and histological integrity of the gastrointestinal tract.  相似文献   

6.
Indian lotus, Nelumbo nucifera (Gaertn.) is a valued medicinal plant that exhibits several pharmacological properties. The present work aimed to investigate the effect of Indian lotus as a feed supplement on the growth performance, haematological and biochemical indices, and intestinal histo‐morphology of Nile tilapia (Oreochromis niloticus L.). The fish were randomly distributed into four groups and fed on a basal diet containing Indian lotus leaf powder at different concentrations (0, 0.1, 0.2 and 0.4%) for up to 60 days. The results elucidated that Indian lotus supplemented diets (0.2% and 0.4% followed by 0.1%) significantly improved weight gain, specific growth rate (%) and feed conversion ratio (p < .05). The feed intake was significantly increased in the fish fed on the Indian lotus supplemented diets in a dose‐dependent manner (p < .05). However, Indian lotus had no significant effect (p > .05) on survival rate, total erythrocytes (RBCs) count, haemoglobin (Hb) and hematocrit value (PCV, %) except a significant reduction on Hb content of the fish fed on 0.2% Indian lotus and a significant increase in PCV (%) in the fish fed on 0.1% Indian lotus (p < .05). The total leucocytes (WBCs), neutrophils and lymphocytes counts displayed significant elevations in the fish fed on the Indian lotus diets especially at 0.2% and 0.4%, whereas significant reduction in neutrophils count in the fish fed on 0.1% Indian lotus (p < .05) was observed. The serum glucose was significantly decreased in the fish fed on Indian lotus (0.1% and 0.2%), whereas cholesterol and triglycerides were markedly increased in the fish fed on the Indian lotus supplemented diets (p < .05). Moreover, the intestinal villous heights and the numbers of goblet cells and intraepithelial lymphocytes (IEL) were significantly boosted in all parts of the intestine in all Indian lotus diet groups as compared with the control group. However, as an exception, villous heights in the middle part of the intestine in the fish fed on 0.1% and 0.4% diets (p < .05) were not affected. In the proximal part, the villous heights and the numbers of goblet cells were markedly increased in fish fed on 0.2% and 0.4% diets followed by 0.1% diet. The fish fed on 0.2% lotus supplemented diet followed by 0.1% and 0.4% supplemented diets exhibited significant elevations in villous heights in the distal part and the numbers of goblet cells in the middle part of the intestine. There were no significant differences between the fish fed on the supplemented diets in the numbers of goblet cells in the distal part and the numbers of IEL in the proximal and middle parts (p > .05). In the distal part, the numbers of IEL revealed a significant elevation in 0.4% lotus supplemented diet followed by 0.1% and 0.2% lotus supplemented diet groups (p < .05). Therefore, this study indicates the advantageous effect of the Indian lotus leaves as a natural feed additive for improving growth, intestinal structure and hence, health status of Nile tilapia.  相似文献   

7.
The effect of the essential oils (EOs) of peppermint, Mentha piperita L., and tea tree, Melaleuca alternifolia (Maiden & Betche) Cheel, on the haematological, biochemical, and immunological parameters and intestinal morphology of Nile tilapia, Oreochromis niloticus L., was evaluated. Fish (58.09 ± 5.87 g) were fed 100 mg/kg and 250 mg/kg of each EO and sampled on days 7, 14, 30 and 60 after starting supplementation. The haematological and biochemical parameters were not altered by the supplementation of EOs compared to the control (p > .05). With regard to the immunological parameters, the activation of the complement system of fish fed 250 mg/kg peppermint and 100 mg/kg and 250 mg/kg tea tree EOs were significantly higher compared to the control after 60 days of feeding (p < .05). The complement system plays an essential role in innate immunity and contributes significantly to the acquired immune response; thus, its activation through supplementation with EOs is promising for the formulation of nutritional additives in aquaculture. Regarding intestinal morphology, fish fed 250 mg/kg tea tree EO presented higher villus size compared to all other groups (p < .05), which represents a healthier gut. These fish present a larger intestinal surface, which can result in better absorption and utilization of the nutrients. Based on the responses found in this study, both EOs were considered promising for the formulation of feed additives for Nile tilapia.  相似文献   

8.
Previous studies have shown that the gut microbiota of fish differs depending on host feeding habits and these populations may also be influenced by dietary ingredients. In this study, the bacterial populations of the intestinal tract of the opportunistic omnivore jundiá Rhamdia quelen and the typical omnivore tilapia Oreochromis niloticus were investigated in two experiments. In experiment I, the levels of amylolytic, cellulolytic, lipolytic, proteolytic and total culturable bacteria were compared in the proximal, mid and distal intestine using selective agar. Higher levels of amylolytic, cellulolytic, lipolytic, proteolytic and total culturable bacteria were observed in the tilapia than jundiá, in all intestinal regions. Jundiá contained higher levels of proteolytic bacteria and lipid digesting bacteria in the distal intestinal portion as compared with the mid intestine; both fish species also presented more amylolytic bacteria in the distal intestine. In experiment II, the amylolytic intestinal microbiota between the two species was compared after administration of diets containing different carbohydrate sources. Jundiá fed broken rice presented higher total culturable bacterial levels; however, dietary cassava bagasse and ground corn significantly elevated the population of amylolytic bacteria in tilapia (> 0.05). PCR‐DGGE was also used to assess the bacterial communities in experiment II. A Cetobacterium spp. was detected in jundiá fed diets containing broken rice, and tilapia fed cassava bagasse, dextrin, broken rice and ground corn. Microbial differentiation was further demonstrated between jundiá and tilapia, because an uncultured bacterium was unique in tilapia and an uncultured spirochete was observed only in jundiá; the presence of these bacterial species was also influenced by dietary carbohydrate sources.  相似文献   

9.
The objective of this study was to determine the effect of total replacement of fish meal by cottonseed meal (CSM) supplemented with various levels of iron in practical diets on growth performance, feed utilization, body composition and some biological and haematological parameters of Nile tilapia, Oreochromis niloticus (L.). Juvenile fish (average weight 3.78±0.1 g) were stocked in 18 glass aquariums (80 L each) at 25 fish per aquarium. Fish meal (50% of the diet) was used as the sole source of animal protein in the control diet 1. Diets 2–6 had 100% CSM (0.145% free gossypol) protein with various levels of supplemented iron (86, 486, 972, 1458 and 1944 mg Fe kg diet?1) in diets 2–6 respectively. Diets were fed to fish twice daily at a rate of 3% of body weight during the first 12 weeks then 2% of the total fish biomass daily until the end of the experiment (30 weeks). The results of this study revealed that, groups of fish fed diets 1, 4, 5 and 6 had significantly (P≤0.01) the higher average body weight and specific growth rate than those of fish fed diet 2 (100% CSM without iron supplementation) and diet 3 (100% CSM plus 486 mg Fe kg diet?1). The best values for feed conversion ratio, protein efficiency ratio and condition factor (K) were recorded with groups of fish fed diet 4 (100% CSM plus 972 mg Fe kg diet?1). Red blood cell count, haematocrit and haemoglobin were increased with increasing levels of iron and significantly affected by dietary iron. Hepatosomatic index for diets 3–6 were not significantly different (P>0.05) and superior to that of diet 1 control [100% fish meal (FM)]. The gonadosomatic index of males of Nile tilapia was not influenced by CSM diets with or without iron, while females of Nile tilapia were significantly influenced with iron and the lowest values were recorded with groups of fish fed diet 2 (100% CSM without iron supplementation). Apparent digestibility coefficients of protein, fat dry matter and energy were relatively high for most diets supplemented with iron and increased by increasing iron supplementation. There were no significant differences between groups of fish fed diet 1 (100% FM) and diets 5 and 6 which contained 100% CSM with additional 1458 and 1944 mg Fe kg diet supplemental iron?1 respectively. Proximate composition of whole body was not influenced by diet. Adding 972 mg Fe kg diet?1 from ferrous sulphate to the CSM‐based diets that contained 972 mg free gossypol (1:1 iron to free gossypol ratio) for Nile tilapia reduce the negative effects of gossypol and improved growth performance, feed utilization and blood parameters and can totally replace fish meal in tilapia diets.  相似文献   

10.
This study investigated the effects of dietary exogenous protease on the growth performance, intestinal health, immune parameters and disease resistance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Five test diets with commercial protease at the levels of 0, 1.38, 2.76, 5.52 and 11.04 U/g (named PE0, PE1, PE2, PE5 and PE11, respectively) were administered to triplicate tanks with 30 fish for 60 days, and then, the fish were challenged with Streptococcus agalactiae for 14 days. The results indicated that weight gain increased as exogenous protease increased from 0 to 5.52 U protease/g diet and then decreased significantly (p < .05) with a further increase in exogenous protease supplementation (p < .05). The height of the villi in the proximal intestine and distal intestine, the width of the villi in three segments of the intestine, and the thickness of the muscle layer in the proximal intestine and mid‐intestine (p < .05) were increased in the fish fed the PE5 diet. Immune and antioxidant indices (except malondialdehyde), and survival after challenged with S. agalactiae were higher in fish fed PE5 diets than in those fed other diets (p < .05). In conclusion, 5.52 U/g protease supplementation in a plant‐based diet could promote the growth performance, intestinal physical barrier function, innate immunity and S. agalactiae resistance of GIFT.  相似文献   

11.
The present study develops an experimental procedure aimed to estimate the efficiency of protein digestion in fish by measuring both gut transit rate and total amount of the main intestinal proteases (trypsin and chymotrypsin). The selected species was the Nile tilapia (Oreochromis niloticus). Total time for digestion, calculated through the estimation of gut transit rate using differently colored feeds, was 7.15 h. Mean production of trypsin and chymotrypsin was 15.94 and 24.11 mU in the proximal intestine and much lower (2,39, 4.90 mU) in the distal intestine. The enzyme efficiency, calculated from the average enzyme activity and time of residence of the digesta in each intestinal section, points to the major role of proximal intestine in protein digestion for this species. Results are discussed in relation to the main features characterizing digestion in stomachless fish.  相似文献   

12.
Replacement of fish meal (FM) and oil (FO) by plant sources can alter the feed mineral profile. However, requirements of these nutrients have not been established for gilthead sea bream. The aim of the present study was to obtain information about the adequate levels of some of these minerals (such as Zn, Cu, Mn, Se, Co, Fe and Ca) in diets with low FM and FO levels. Six plant‐based practical diets were supplemented with increasing levels of a multi‐nutrient package for 155 days. Performance parameters, biochemical analyses of whole body, vertebrae, plasma and blood cells; haematocrit; expression of several genes in liver and vertebrae were conducted. Increasing multi‐nutrient package affected fish growth, expression of molecular markers and mineral content in different tissues. A regression method was used to establish a relation between multi‐nutrient package levels and different indicators. However, nutrient interactions made it difficult to obtain clear results and so specific effects of each mineral must be studied in more detail. Mineral supplementation was required for Zn, Cu, Mn, Se and Co, whilst basal levels of Ca were sufficient to cover the optimum levels. On the other hand, there is evidence regarding a possible interaction between Fe and Zn which reduced Fe availability and absorption.  相似文献   

13.
Two basal diets M0 and V0 were formulated with marine and plant based ingredient composition. Seven experimental diets were prepared from the two basal diets namely M0, M100, V0, V30, V60, V100 and V150 by incorporating different levels of a micromineral premix (Cu, Fe, Mn, Se and Zn). Triplicate groups of rainbow trout (initial weight: 20 g) reared at 17°C were fed one of each diet to apparent visual satiation over 12 weeks. Among the V diet fed fish, growth and feed intake exhibited maximal response at V60 level of premix inclusion; Apparent availability coefficient of Fe, Cu and Zn decreased linearly with increasing level of premix whereas apparent availability coefficient of Mn and Se was unaffected. The available dietary concentration in basal V0 diet was for Fe, 20.6; Cu, 2.8; Mn, 6.5; Zn, 17.3 and Se, 0.195 (in mg/kg DM) and in the M0 diet for Fe, 63.3; Cu, 5.2; Mn, 2.9; Zn, 35.2 and Se, 0.87 (in mg/kg DM). In reference to NRC (Nutrient requirements of fish and shrimp. Washington, DC: National Research Council, The National Academies Press, 2011) recommendations, the V0 basal diet accounted for 34.3%, 92.9%, 53.9%, 115% and 130.2% and the contribution from M0 diet for 105.5%, 173.3%, 24.2%, 234.7% and 580% of the minimal dietary inclusion levels of Fe, Cu, Mn, Zn and Se to rainbow trout, respectively. However, data on whole body mineral contents showed that normal levels were maintained only for Cu and Mn through supply from basal V0 diet. For Zn and Se, available supply even from the highest supplemented diet (V150) was not sufficient to maintain normal body mineral levels of rainbow trout in the present study. On the whole, optimal dietary inclusion levels of microminerals are altered while using fishmeal‐free diets for rainbow trout.  相似文献   

14.
The bee pollen is considered an excellent source of flavonoids, carotenoids, phenolic compounds, sterols and minerals; and possesses the ability to boost the immune system, antioxidant action and other interesting therapeutic effects. This study was carried out aiming to evaluate the inclusion of bee pollen in extruded commercial diets of Nile tilapia fingerlings and its effects on the hepatic‐intestinal histomorphometry and zootechnical performance. A total of 225 tilapia fingerlings (1.25 ± 0.05 g) were distributed in a completely randomized design in 15 tanks (30 L) maintained in a recirculation water system with three treatments (0% or control, 1.5% and 2.5% of bee pollen inclusion) and five replicates. Feeding rates were defined from the weekly biometrics and periodic monitoring of the physical–chemical water quality parameters. The water quality variables remained within the appropriate range for the species throughout the experiment. There was no significant difference for the somatic indexes and zootechnical parameters in this experiment. However, the inclusion of bee pollen in Nile tilapia fingerlings diets showed a linear increase in hepatocyte morphology (p = .0098). For the intestinal variables of villus height a significant linear increase was observed (p < .05) as the pollen inclusion increased. In fish that received 2.5%, the number of goblet cells was significantly higher (p < .001) than control group and 1.5%. In this sense, the inclusion up to 2.5% bee pollen in extruded commercial diets of Nile tilapia fingerlings had a positive impact on hepato‐intestinal histomorphometry without causing negative effects on the zootechnical performance.  相似文献   

15.
In previous studies, combined inclusion of Zn, Mn and Se in early weaning diets improved larval growth, but suggested a potential toxicity by one of these elements. The present study aimed to determine the effect of the single inclusion of Zn, Mn, Se or Cu, their combination (Control+) or their absence (Control?) on larval diets. At the end of the trial, survival was significantly (p < .05) lowest in fish fed C+ diet (17.16 ± 7% mean ± SD), followed by that of larvae fed Mn diet (21.91 ± 7%). The highest survival was obtained by Cu diet (35.27 ± 15%), followed by C? diet (34.58 ± 9%). Cu and Se supplementation significantly improved total length and body weight, in comparison with the C? fish. On the contrary, fish fed Mn and C+ showed the lowest growth. Supplementation with Zn or Cu significantly increased CuZnsod, whereas gpx was significantly upregulated in fish fed Se and C+ diets. ARA/EPA level was significantly highest and DHA/EPA lowest in larvae fed the Cu diet in fish fed C+ diet. The results pointed out the importance of supplementation with Cu, as well as Se and Zn, on early weaning diets for gilthead sea bream, and the potential toxic effect of Mn.  相似文献   

16.
This study evaluated the ability of orange peel fragment (OPF) to act as a functional feedstuff, influencing growth, haematological profile, and antioxidant enzyme activity of Nile tilapia subjected heat/dissolved oxygen‐induced stress (HDOIS). A group of 440 male Nile tilapia (31.7 g ± 0.34) was randomly distributed in 40 250‐L aquaria (11 fish/tank) and fed five practical diets with graded levels of OPF at 0%, 0.2%, 0.4%, 0.6%, and 0.8% for 70 days. The diets were formulated to contain 30% crude protein and 18 MJ/kg crude energy. After the feeding period, growth performance was evaluated and six fish per treatment were sampled for haematological profile and antioxidant enzyme activity, before and after HDOIS. Then, fish were subjected to HDOIS (32°C/2.3 mg/L dissolved oxygen) for three days and the same haematological profile and antioxidant enzyme activity were determined. There was no effect of OPF on the haematological profile, either before or after HDOIS. The polynomial regression model was used to express the relationship between antioxidant enzymes activity and OPF supplementation level. The maximum activity of superoxide dismutase, catalase, and glutathione peroxidase was reached at 0.66%, 0.63%, and 0.68% of OPF respectively. Results of the present study suggest that a dietary supplementation level of 0.63%–0.68% of orange peel fragment was appropriate to maintain Nile tilapia haematological profile and improve its antioxidant capacity under HDOIS.  相似文献   

17.
Levels of the oxidative stress‐related minerals selenium (Se), zinc (Zn) and manganese (Mn) that should be supplied in microdiets for marine fish larvae depend on the availability of the molecular form of these minerals. The objective of this study was to determine how effectively Se, Zn and Mn in organic, inorganic and nanoparticle forms promote larval performance and bone development. Microdiets supplemented with Se, Zn and Mn were fed for 24 days to 20 dah seabream larvae. Microdiets without Se, Zn and Mn supplementation were associated with poor growth, low bone mineralization and a high incidence of anomalies in the branchial arches. Including Zn, Mn and Se in an amino acid chelate organic form promoted maximum larval growth, increased body lipid reserves, enhanced early mineralization and prevented branchial arches anomalies. In contrast, feeding with inorganic forms of these minerals was less effective than organic minerals in improving larval weight or bone mineralization in comparison to the non‐supplemented diet. Moreover, the larvae were less resistant to stress, and fish showed higher bone anomalies in the pre‐hemal region. Adding Zn, Mn and Se in the form of nanometals did not enhance growth, but improved stress resistance and bone mineralization. The study showed the need to supplement seabream with early weaning diets based on squid meal and krill oil with one or more of the antioxidant minerals, to promote larval growth, bone mineralization and prevention of skeleton anomalies, organic minerals being more effective than inorganic forms and nanometals in promoting mineralization and stress resistance.  相似文献   

18.
Duplicate groups of Atlantic salmon (Salmo salar), kept in saltwater, were fed fish meal based cold-pelleted diets where graded levels of native or extruded non-starch polysaccharides (NSP) from soybeans replaced cellulose, at a total NSP level of 100 g kg− 1 for 28 days. The study also included a diet where defatted soybean meal (SBM) constituted the NSP at a level of 100 g kg− 1 and a reference diet without NSP supplementation.The SBM diet resulted in a significant reduction in faecal dry matter content, apparent digestibilities of starch and organic material, and growth, and an increased faecal output of several elements (K, Na, Zn), compared to all the other diets. Morphological changes were only seen in the intestine of the fish fed the SBM, i.e. the diets holding purified soy-NSP did not induce enteritis. When compared to the diet without NSP, cellulose addition increased faecal dry matter, while inclusion of native soy-NSP reduced it. Dry matter in faeces and apparent digestibility of crude protein decreased in a linear manner, while the digestibility of starch and faecal output of K and Na increased linearly when native soy-NSP replaced graded levels of cellulose from 0 to 100 g kg− 1 feed. When diets with 75 or 100 g kg− 1 of native NSP and extruded soy-NSP were compared, fish fed native soy-NSP had reduced faecal dry matter, higher digestibility of starch, and increased faecal output of Cu, Fe, and K. Dry matter in faeces and faecal output of Cu was lower for the highest inclusion level, while digestibility of starch and faecal output of Mn and K were higher.In conclusion, soy-NSP was inert compared to the fish meal reference, with respect to nutrient digestibilities and intestinal pathologies, but affected faecal mineral excretion in Atlantic salmon.  相似文献   

19.
An 84‐day feeding experiment was conducted to determine the effects of dietary ginseng extract (GE), tribulus extract (TE) and date palm pollen grains (DPPG) on growth, testosterone level and nutrient utilization of Nile tilapia, Oreochromis niloticus, fingerlings. Seven experimental treatments were conducted in three replicates: control fed basal diets without any supplementations, GE0.2 (supplemented with 0.2 g GE/kg diet), GE0.4 (supplemented with 0.4 g GE/kg diet), TE0.6 (supplemented with 0.6 g TE/kg diet), TE1.2 (supplemented with 1.2 g TE/kg diet), DPPG3 (supplemented with 3 g DPPG/kg diet) and DPPG6 (supplemented with 6 g DPPG/kg diet). The results indicated that all dietary phytochemicals significantly increased growth compared to the control. Plasma testosterone levels were improved by 86.27%, 64.58%, 57.35% and 24.58% with TE1.2, GE0.4, TE0.6 and DPPG6, respectively, more than the control. The relationship between testosterone and final body weight showed a significant simple linear regression with a positive correlation. The nutrient utilization imprxoved with higher doses of phytochemical supplementations. Moreover, protein content increased and ether extract decreased with phytochemical supplementation. The present results concluded that higher doses of GE, TE and DPPG could be used as growth promoters and testosterone boosters for Nile tilapia fingerlings.  相似文献   

20.
The objective of this study was to evaluate growth, body chemical composition and lipid profile of Nile tilapia juvenile fed with Schizochytrium sp. Two hundred and forty Nile tilapia (Oreochromis niloticus) juvenile (1.33 ± 0.11 g) were distributed in 20 aquariums, at the density of 12 fish per aquarium. The juvenile were fed with five levels of Schizochytrium sp.: Control (0 g/kg of Schizochytrium sp. in feed); AS10 (10 g/kg of Schizochytrium sp. in feed); AS20 (20 g/kg of Schizochytrium sp. in feed); AS30 (30 g/kg of Schizochytrium sp. in feed) and AS40 (40 g/kg of Schizochytrium sp. in feed). The inclusion of Schizochytrium sp. increase the body weight, weight gain, final biomass and biomass gain of tilapia juvenile. The body crude protein of tilapia was increased after addition of microalgae. Juvenile lipid profile also was influenced when fed with 40 g of Schizochytrium sp. per kg and have it levels of omega‐3 and docosahexaenoic acid (DHA) increased, and omega 6:3 ratio decreased. Tilapia juvenile fed with Schizochytrium sp. per kg have better growth, omega‐3 and DHA levels rising in the body, being a considerable source of fatty acids for human nutrition. Levels above 20 g of Schizochytrium sp. per kg in the feed favour the increase of protein in Nile tilapia body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号