首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 µg g-1) or 3 reGH injections (0.25 µg g-1 every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 µg g-1) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 µg g-1) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70% SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.  相似文献   

2.
The growth-independent effect of ovine growth hormone (oGH) and oGH + cortisol treatment on seawater (SW) adaptation in immature rainbow trout, Salmo gairdneri was investigated. Fish were injected every second day with saline, 2.0 μg oGH/g or 2.0 μg oGH + 8.0 μg cortisol/g for a maximum of 8 injections in freshwater (FW). Subgroups were transferred to 28‰ SW after 4 or 8 injections, and changes in plasma Na+ and Cl, muscle water content and gill Na+/K+-ATPase activity were measured. In both of the hormone-treated groups retained in FW, gill Na+/K+-ATPase activity and interlamellar chloride cell density increased. The effects were most pronounced in the oGH + cortisol group after 2 weeks of treatment. After transfer to SW most of the control fish died due to the osmotic stress, whereas in the hormone-treated groups, mortality was low and there was a positive correlation between pretransfer gill Na+/K+-ATPase and the ability to maintain ionic-osmotic homeostasis after SW transfer. After two weeks of oGH + cortisol treatment, gill Na+/K+-ATPase activity was maximal. In contrast, after SW transfer, Na+/K+-ATPase activity increased further in the oGH-treated group. This group regulated ionic-osmotic parameters less effectively than the oGH + cortisol-treated group. The data indicate that GH and cortisol are important hormones in the regulation of hypoosmoregulatory mechanisms in S. gairdneri.  相似文献   

3.
The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 g g–1) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na+,K+-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.  相似文献   

4.
The effect of cortisol on osmoregulatory parameters was studied in rainbow trout, (Salmo gairdneri), kept in freshwater (FW) and/or transferred to seawater (SW). Repeated injections of 20 μg cortisol/g fish stimulated gill and gut Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels after 2 weeks of treatment in FW-adapted fish. Cortisol doses of 0.05 and 1.0 μg/g were without effect. Repeated injections of 10 μg cortisol/g stimulated gill Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels in fish in FW, and significantly improved ion regulation after their transfer to 28SW. Higher doses of cortisol (10 and 20 μg/g) induced hyperglycemia, whereas low doses (0.05 and 1.0 μg/g were without effect or induced hypoglycemia. Plasma glucose levels decreased in cortisol-treated fish transferred to SW, whereas transient hyperglycemia was seen in the control fish.  相似文献   

5.
Osmoregulatory actions of growth hormone (GH) and its mode of action in salmonids are reviewed. We present evidence suggesting that insulin-like growth factor I (IGF-I) mediates some of the actions of GH on seawater acclimation. Plasma concentration and turnover of GH rise following exposure to seawater. Exogenous GH (in vivo) increases gill Na+,K+-ATPase activity and the number of gill chloride cells, and inhibits an increase in plasma osmolarity and ions following transfer of fish to seawater. A single class of high affinity GH receptors is present in the liver, gill, intestine, and kidney. The levels of IGF-I mRNA in the liver, gill and kidney increased after GH-injection. After transfer to seawater, IGF-I mRNA increased in the gill and kidney following the rise in plasma GH, although no significant change was seen in the liver. Injection of IGF-I improved the ability of the fish to maintain plasma sodium levels after transfer to seawater. GH treatment also sensitizes the interrenal to adrenocorticotropin (ACTH), increasing cortisol secretion. Both cortisol and IGF-I may be involved in mediating the action of GH in seawater adaptation, although studies on the effect of GH on osmoregulatory physiology of non-salmonid species are limited. An integrated model of the osmoregulatory actions of GH is presented, and areas in need of research are outlined.
Résumé Cet article est une revue des effets osmorégulateurs de l'hormone de croissance et de son mode d'action. Nous présentons des résultats qui suggèrent que le facteur de croissance de type insuline (IGF-I) est un médiateur de certaines des actions de la GH sur l'adaptation à l'eau de mer. Les concentrations plasmatiques et le renouvellement de la GH augmentent après transfert en eau de mer. La GH exogène stimule (in vivo) l'activité Na+,K+-ATPase et le nombre de cellules à chlorure branchialeset inhibe les augmentations de l'osmolarité et des concentrations ioniques du plasma observées après transfert en eau de mer. Une seule classe de récepteurs à haute affinité pour la GH est présent dans le foie, les branchies, l'intestin et le rein. Les niveaux d'ARNm d'IGF dans le foie, les branchies et le rein augmentent après injection de la GH. Après transfert en eau de mer, les ARNm de l'IGF augmentent dans les branchies et dans le rein en suivant l'augmentation de GH plasmatique, bien qu'aucune modification ne soit observée au niveau du foie. L'injection d'IGF augmente la capacité du poisson à maintenir ses niveaux de sodium plasmatique après transfert en eau de mer. Le traitement à la GH augmente la sensibilité à l'adrenocorticotropine (ACTH) et stimule donc les niveaux de cortisol. A la fois le cortisol et l'IGF-I semblent impliqués comme médiateurs des effets de la GH dans l'adaptation à l'eau de mer, bien que les études sur les effets de la GH sur la physiologie de l'osmorégulation chez les espèces non-salmonidés restent encore limitées. Un modèle intégré des actions de la GH sur l'osmorégulation est présenté et les domaines de recherche à développer sont soulignés.
  相似文献   

6.
7.
Using rainbow trout plasma protein (IGF-BP) which specifically binds human insulin-like growth factor (IGF) (Niu and Le Bail 1993), we have developed an assay to measure plasma IGF-like levels in different teleost species. Before the assay and to prevent interference by IGF-BP, IGF-like was extracted from all samples, using SP Sephadex C-25 in acidic conditions. After this treatment, contamination of the IGF fraction by IGF-BP which was estimated by binding assay, was approximately 5%, and was not detectable by western ligand blot. Human IGF-I was used as standard and labelled hormone. Sensitivity of the assay was 0.15–0.40 ng/ml (ED90) and ED50 was 1–3 ng/ml. hIGF-II crossreaction was partial and no significant displacement was observed with Insulin from different species or with other hormones. Inhibition curves were obtained with plasma IGF fractions (but not with tissue extracts) from teleost and mammals and are parallel to the standard curve. These results suggest that the protein binding assay can quantify an IGF-like factor in the plasma of teleost and that the binding sites of IGF are well conserved during vertebrate evolution. Using this IGF binding assay, IGF-like was measured in parallel with growth hormone (GH) in plasma from young rainbow trout killed every 1.5h throughout one day. The daily profiles for both hormones, which appear pulsatile, are similar. A significant correlation was observed between GH levels and IGF-like levels with a 1.5h delay. Analogous observations were obtained in individual catheterized adult rainbow trout. Although plasma GH levels differ greatly between fish, less variability is found with IGF-like. In a third experiment, rainbow trout were starved or submitted to bovine GH treatment for four weeks. Starved fish, in which plasma GH levels increased, had plasma IGF-like level significantly lower than in fed fish. In bGH injected fish, plasma IGF-like level was significantly higher than in non-injected fish. These results suggest that, as in mammals, IGF-like secretion depends on plasma GH level and could be modulated by the nutritional status of fish.  相似文献   

8.
The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 g g–1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 g g–1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 g g–1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 g g–1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.  相似文献   

9.
The glutamate agonist, N-methyl-D,L-aspartate (NMA) stimulates the secretion of growth hormone (GH) from pituitary fragments in vitro and increases plasma GH levels in vivo in rainbow trout, Oncorhynchus mykiss (Flett et al. 1994; Holloway and Leatherland 1997a,b); however gonadal steroid hormones appear to modulate this response in experimental situations. This study examines whether steroid hormones also modulate the GH-regulatory actions of NMA during the normal reproductive cycle of rainbow trout by examining the relationship between the stage of sexual maturation and the pituitary release of GH in vitro in response to an NMA (10-8 M) challenge. NMA had no effect on mean GH release from the pituitary glands of fish that were immature (GSI <1.0), from males during early development (GSI 1.0-3.0), or from sexually mature males (with free running milt) and females (ovulated). However, NMA significantly increased GH release from pituitary glands taken from females during the early stages of gonadal growth (GSI 1.0-9.0) and from males and females sampled during the later stages of gonadal growth (males GSI 3.01-6.0; females GSI 9.01-15.0). The GH-stimulatory action of NMA in males and females progressed to a maximum effect during the late stages of gonadal growth, and disappeared in ovulated females and free running males. Moreover, in female fish, the maximal GH release in response to the NMA challenge is positively correlated with plasma 17β-estradiol levels; no such correlation was evident for plasma testosterone levels in males. Changes in the GH response to NMA during maturation while gonadal steroid levels fluctuate provides further evidence to suggest that the effects of NMA on GH secretion are intimately linked to endogenous gonadal steroid hormone levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The effects of ovine prolactin (oPRL) on osmoregulatory ability (electrolyte balance, plasma osmolality and activity of gill chloride cells and gill Na+/K+‐ATPase) and stress responses (plasma cortisol, glucose, aspartate aminotransferase: AST and alanine aminotransferase: ALT) were investigated in black porgy transferred to freshwater (FW). Fish in seawater (SW) were injected twice at a 24 h interval with oPRL (at 1, 3, or 5 μg g–1 body weight) or vehicle (0.9% NaCl) and then transferred to FW. They were sampled 3 days after the transfer. With oPRL at 5 μg g–1, levels of plasma Na+ and Cl? and osmolality were significantly higher than in saline‐treated fish, whereas gill CCs number and Na+/K+‐ATPase activity were lower. Also, the 5 μg g–1oPRL treatment led to significantly lower plasma cortisol levels than did saline treatment. However, there were no significant differences in plasma AST and ALT between groups. These results support the positive osmoregulatory role of PRL in black porgy during FW adaptation.  相似文献   

11.
Brown (BT) and rainbow trout (RT) in freshwater (FW) were treated with ovine growth hormone (GH), GH + iopanoic acid (IOP), and GH + IOP plus triiodothyronine (T3) for RT only. After 1 week of treatment, trout were transferred to 30 o/oo SW and treatment continued. In FW, GH treatment increased significantly plasma T3 level (BT) and T3/T4 ratio (BT and RT) by stimulating T4 to T3 deiodination. In the GH + IOP group, the plasma T3 levels and T3/T4 ratio fell significantly as T4 to T3 deiodination was inhibited. In GH + IOP + T3-treated RT, plasma T3 and T3/T4 ratios increased significantly relative to other groups. No mortality occurred and plasma osmolarity (PO) was not altered by any treatment in FW. After transfer to SW, all IOP + GH trout died within 2 (BT) or 3 days (RT). All GH-treated or control BT survived to the end of the experiment (6 days). RT survival rates tended to be improved in GH and GH + IOP + T3 groups relative to controls. Correlatively on day 1 the PO increase was significantly higher in IOP + GH groups (BT and RT) than in the other groups and significantly lower in GH and GH + IOP + T3 treated RT than in controls from days 1 to 6. These data confirm the requirement of T3 and deiodination of T4 to T3 for the development of hypoosmoregulatory mechanisms in SW as previously shown (Lebel and Leloup 1992). Furthermore, the suppression of the hypoosmoregulatory effect of GH, when conversion of T4 to T3 was inhibited by IOP and the reversal when T3 was added to IOP + GH treatment suggests that GH osmoregulatory action in SW acts via the simulation of T4-5′ monodeiodination which increases T3 production.  相似文献   

12.
13.
The osmoregulatory ability of chum salmon (Oncorhynchus keta), reared in fresh water for a prolonged period, was examined by transferring them directly to seawater and then back to fresh water. When fry and juveniles weighing 0.3–125g, reared in fresh water for 1.5–13 months, were transferred directly to seawater, they adjusted their plasma Na+ concentration to the seawater-adapted level within 12–24h. When they were transferred back to fresh water after having been adapted to seawater for 2 weeks, the plasma Na+ level gradually decreased during the first 12–24h, and then increased to reattain the initial freshwater level after 5–7 days. No mortality was observed during the experiment except among the smallest fry weighing about 0.3g after transfer to seawater (2.1%). The maintenance of good osmoregulatory ability of the chum salmon for a prolonged period in fresh water seems to be unique among Pacific salmon, with the possible exception of the pink salmon.Changes in plasma levels of hormones during the transfer experiments were recorded in juveniles reared in fresh water for 13 months. Prolactin levels increased maximally 3 days after transfer from seawater to fresh water, as would be expected from its well-established role in freshwater adaptation in several euryhaline teleosts. In addition, an increase in plasma growth hormone was observed during the first 12h after seawater transfer, along with a tendency towards a decrease during freshwater transfer, suggesting an important role for this hormone in seawater adaptation. There were no consistent changes in plasma levels of thyroxine and cortisol during freshwater to seawater or seawater to freshwater transfer.  相似文献   

14.
Two experiments were conducted to compare the patterns of plasma free amino acid concentrations after force-feeding in rainbow trout Oncorhynchus mykiss (Walbaum) with and without dorsal aorta cannulation. In the first experiment, 35 rainbow trout averaging 504 ± 7.8 g (mean ± SD) were divided into seven groups of five fish each. After 48 h starvation, a group of fish was anaesthetized and blood samples were taken at one of the following time periods: 0, 4, 8, 12, 24, 36 and 48 h after feeding. In the second experiment, five dorsal aorta cannulated rainbow trout averaging 511 ± 6.2 g (mean ± SD) were kept in a cage. After 48 h starvation, the fish were anaesthetized and blood samples were taken from the same fish at 0, 4, 8, 12, 24, 36 and 48 h after feeding. In the first experiment, the concentration of all plasma free amino acids except histidine and glycine peaked at 4 h and returned to the basal level 24 h after feeding. In the second experiment, the concentration of all plasma free amino acids except isoleucine, leucine, phenylalanine and tryptophan also peaked at 4 h and returned to the basal level 24 h after feeding. These results showed that the pattern of plasma free amino acid concentrations from fish with and without dorsal aorta cannulation were similar.  相似文献   

15.
This paper reports on the effect of administration of mammalian growth hormone (GH) on muscle protein synthesis as measured in white muscle using the phenylalanine flooding technique. The effect of exogenous GH was compared with that of insulin and prolactin, and with endogenous GH.The rate of protein synthesis in white muscle of rainbow trout 6 h after the injection of bovine GH or bovine insulin was twice (2.6 and 2.9% d–1) that of the control saline-injected fish (1.2% d–1). A metabolic effect of GH, as observed with insulin, is suspected.The rates of change in body weight and body length and the fractional rate of protein synthesis in muscle of rainbow trout were enhanced by mammalian GH administration. The effect of GH on muscle RNA/protein ratios was not significant. An opposite effect of antibodies against salmon GH (Lebailet al. 1989) on growth rate and muscle protein synthesis rate was found in rainbow trout. It is suggested that the effects of exogenous and endogenous GH on capacity and efficiency of muscle protein synthesis were similar.The long-term effects of mammalian GH on presmolt Atlantic salmon was also tested. The same trends were found with ovine prolactin supplementation in Atlantic salmon but not as high as those observed with ovine GH.  相似文献   

16.
In fish, regulation of the growth hormone (GH) receptor has been mainly analyzed by binding studies, with some discrepancies in the results. The present work aims at determining whether circulating GH levels influence the measurement of hepatic GH-binding capacities. To do this, the effectiveness of the dissociation of the GH/GH receptor (GHR) complex by an MgCl2 treatment was assessed in rainbow trout, and data on GH-binding capacities under various physiological conditions were studied using different means of expression. Our results reveal that MgCl2 treatment dissociated the liver GH/GHR complex formed under in vitro conditions (85 ± 23 vs. 361 ± 16 fmol/g of liver; p<0.001) but not in vivo, showing such treatment in trout is not applicable. A comparison of fasted (3 weeks) and fed fish revealed that GH-binding capacities, expressed as femtomoles per milligram protein or femtomoles per gram of liver, were similar in both fed and fasted fish. However, when changes in liver and body size were taken into account, the total GH-binding capacities were lower in the fasted fish (0.026 ± 0.006 vs. 0.062 ± 0.009 fmol/cm3 liver; p<0.05). One day after hypophysectomy or GH injection, changes in the plasma GH levels increased or decreased GH-binding capacities, respectively. Five days later, GH-binding capacities increased in GH-injected fish (527 ± 38 vs. 399 ± 38 fmol/g liver; p<0.01). Our interpretation is that acute treatment modified GH-binding capacities through receptor occupancy and that GH stimulated the synthesis of its own receptor. On the other hand, long-term treatment through successive injections of GH lowered the total binding capacities (approx. 40%), which could result from receptor occupancy. We conclude that circulating GH levels strongly influence the measurement of GH-binding capacities in the liver, thereby limiting interpretation of the binding data and preventing accurate conclusions to be drawn on GHR regulation.  相似文献   

17.
18.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

19.
Clove oil has been demonstrated to be an effective, inexpensive anaesthetic and euthanizing agent for a number of fish species, including rainbow trout, used in aquaculture and fisheries research. However, the potential for clove oil to cause perturbations in important plasma hormone concentrations has not been investigated. The effect of anaesthesia and euthanasia in trout with eugenol (the active ingredient in clove oil) on plasma cortisol, glucose, growth hormone (GH) and two thyroid hormones [tri‐iodothyronine (T3) and thyroxine (T4)] was compared with tricaine methanesulfonate (MS‐222) anaesthesia, and stunning by cranial concussion in two experiments. Effects on blood chemistry were different when comparing the particular anaesthetic method being used. Stunning fish significantly increased plasma cortisol and glucose levels (both P<0.05), while euthanizing fish using either clove oil or MS‐222 had no effect on these hormone levels. In contrast, the levels of GH, T3 and T4 hormones were unaffected regardless of whether fish were euthanized by stunning, MS‐222 or clove oil. Variation in effects between hormones were observed using clove oil eugenol. In fish sampled 10 min after anaesthetizing with 150 mg L?1 of eugenol, cortisol levels were significantly decreased (P<0.03), while there were no differences in either glucose or GH levels. Tri‐iodothyronine and T4 also showed significantly elevated levels (P<0.05) after 10‐min exposure to eugenol. These results highlight the importance of investigating the potential effects of any new anaesthetic or euthanizing compounds on blood plasma parameters, prior to using them in a research setting, or when comparing results to other studies which have utilized alternative anaesthetic compounds.  相似文献   

20.
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号