首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus agalactiae is a Gram‐positive facultative intracellular bacterium that leads to severe economic loss of tilapia worldwide. Previous studies demonstrated that CD40 contributes to host protection against intracellular injection. In this study, CD40 was characterized from Nile tilapia (Oreochromis niloticus), named OnCD40. Sequence analysis showed that open reading frame of OnCD40 was 933 bp, containing a single peptide, a transmembrane domain and four cysteine‐rich domains. The qRT‐PCR revealed that OnCD40 was expressed in all examined tissues with the most abundant ones in spleen and thymus. After S. agalactiae stimulation, the expression of OnCD40 was significantly induced in most of the detected organs. Moreover, OnCD40‐overexpressing fish elicited significant protection against subsequent S. agalactiae challenge; approximately 10000‐fold fewer bacteria were detected in spleen of OnCD40‐overexpressing fish in comparison with control fish. Thus, CD40 had protecting function in Nile tilapia against intracellular pathogens.  相似文献   

2.
3.
Streptococcus agalactiae is an important pathogen in fish, causing great losses of intensive tilapia farming. To develop a potential live attenuated vaccine, a re‐attenuated S. agalactiae (named TFJ‐ery) was developed from a natural low‐virulence S. agalactiae strain TFJ0901 through selection of resistance to erythromycin. The biological characteristics, virulence, stability and the immunization protective efficacy to tilapia of TFJ‐ery were determined. The results indicated that TFJ‐ery grew at a slower rate than TFJ0901. The capsule thickness of TFJ‐ery was significantly less (p < 0.05) than TFJ0901. When Nile tilapia were intraperitoneally (IP) injected with TFJ‐ery, the mortality of fish was decreased than that injected with TFJ0901. The RPS of fish immunized with TFJ‐ery at a dose of 5.0 × 107 CFU was 95.00%, 93.02% and 100.00% at 4, 8 and 16 weeks post‐vaccination, respectively. ELISA results showed that the vaccinated fish produced significantly higher (p < 0.05) antibody titres compared to those of control at 2 or 4 weeks post‐vaccination. Taken together, our results suggest that erythromycin could be used to attenuate S. agalactiae, and TFJ‐ery is a potent attenuated vaccine candidate to protect tilapia against S. agalactiae infections.  相似文献   

4.
5.
Identifying candidate genes involved into osmoregulation provides a basis for developing molecular markers for breeding of saline tilapia. In this study, we characterized and conducted a functional analysis of the Enhancer of Polycomb Homolog 1 (EPC1) gene in Nile tilapia. The length of the EPC1CDS sequence was 1161 bp, including 14 exons encoding 386 amino acid residues. The expression for EPC1 was investigated in the gill, brain and intestine tissues of Nile tilapia that challenged by 0 ppt, 10 ppt, 15 ppt and 20 ppt of salinity content by qRT‐PCR. We found that the gene was significantly down‐regulated at 20 ppt of high salinity stress. We also detected significant evidence of 5 SNP association in the EPC1 gene with salt tolerance trait by genotyping 192 extreme individuals from a full‐sib tilapia family (N = ~500). The individuals with heterozygous SNP genotypes in the population (with an average survival time of 3,064 s) were significantly less tolerant than the other individuals with the homozygote genotypes (with an average survival time of 5,986 s). Further functional analysis on the EPC1 protein sequences from 31 fish species inhabiting different salinity environments identified seven amino acid sites as significantly associated sites (α < 0.01) with salinity content. These data suggested that the EPC1 gene may be a candidate gene related to osmoregulation process in tilapia. Our findings could contribute to selection of the saline tilapia by using marker‐assisted selection technique.  相似文献   

6.
Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real‐time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS‐s/IGS‐a, which targets the 16S‐23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post‐injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post‐injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish.  相似文献   

7.
CD3 is an important membrane molecule of mature T cells. TCR‐CD3 complex plays important roles in the activation and signal transduction of T cells. In this study, the CD3ε (OnCD3ε) gene was cloned from Nile tilapia (Oreochromis niloticus), and its tissue distribution was detected by qPCR. The expression changes in CD3ε were analysed after three challenges (S. agalactiae, A. hydrophila and poly (I:C)) in vivo and in vitro. The open reading frame (ORF) of OnCD3ε contains 531 bp, encoding 176 amino acids, which found that OnCD3ε consists of conserved amino acid residues and motifs (cysteine residues, CXXC motif, immunoreceptor tyrosine‐based activation motifs and PxPDY). In addition, tissue distribution displayed that OnCD3ε has the highest expression in thymus and significant expression level in mucosal immune‐related tissues (intestine and gills). In vivo, all three challenges could significantly up‐regulate the expression of CD3ε in the head kidney and spleen. For further in vitro assays, after poly (I:C) stimulation, OnCD3ε appeared significant up‐regulation at 3 hr post stimulation, and two pathogenic bacteria also induce significant up‐regulation of OnCD3ε in spleen leucocytes (12 hr). These results suggested that OnCD3ε was likely to get involved in host immune response against pathogenic challenges.  相似文献   

8.
A 20‐week feeding trial was conducted to measure growth, nutrient utilization and faecal/gut bacterial counts in triplicate groups of red hybrid tilapia, Oreochromis sp., when fed diets supplemented with 0.5% organic acids blend (OAB), 1.0% OAB, 0.5% oxytetracycline (OTC) or a control diet (no additives). At the end of the feeding trial, tilapia were challenged with Streptococcus agalactiae for 22 days. Fish fed the OTC diet had significantly higher (P < 0.05) growth than the control treatment, while growth between fish fed the OTC or OAB diets was not significantly different (P > 0.05). Phosphorus, dry matter and ash digestibility were significantly higher in the 1.0% OAB diet than the control diet. Fish fed the OAB diets had significantly lower colony‐forming units of adherent gut bacteria compared to the control or OTC treatments while those fed the 1.0% OAB diet had the lowest total faecal bacterial counts. Tilapia fed the 0.5% OTC or OAB diet had significantly higher resistance to S. agalactiae than those fed the control diet. This study indicates that dietary organic acids can potentially replace OTC as a growth promoter and antimicrobial in tilapia feeds.  相似文献   

9.
Streptococcus agalactiae is a major pathogen of tilapia causing significant economic losses for the global aquatic industry yearly. To elucidate the role of cel‐EIIB protein‐mediated phosphotransferase systems (PTS) in the virulence regulation of S. agalactiae, cel‐EIIB gene deletion in a virulent strain THN0901 was achieved by homologous recombination. The cellobiose utilization of △cel‐EIIB strain was significantly decreased relative to S.a.THN0901 strain incubating in LB with 10 mg/ml cellobiose (p < 0.05). The biofilm formation ability of △cel‐EIIB strain was also significantly decreased when cultured in BHI medium (p < 0.05). Under a lower infection dose, the accumulative mortality of tilapia caused by △cel‐EIIB strain was dramatically decreased (20%), of which S.a.THN0901 strain and △cel‐EIIB::i strain were 53.33% and 50%, respectively. The competition experience using tilapia model indicated the invasion and colonization ability of △cel‐EIIB strain was significantly weaker than that of S.a.THN0901 strain (p < 0.05). Compared to △cel‐EIIB::i strain, the mRNA expression of csrS, csrR, rgfA, rgfC, bgrR and bgrS was significantly downregulated in △cel‐EIIB strain (p < 0.05). In conclusion, cel‐EIIB protein‐mediated cel‐PTS not only contributes to biofilm formation and virulence regulation, but also plays an important role in the invasion and colonization of S. agalactiae.  相似文献   

10.
This study examined the antimicrobial susceptibility and mutation(s) in quinolone resistance‐determining regions (QRDRs) in streptococcal pathogens isolated from farmed Nile tilapia Oreochromis niloticus in Thailand. Surveillance of antimicrobial susceptibility in tilapia streptococcal pathogens reveals that Streptococcus agalactiae (= 97) and Streptococcus iniae (= 3) from diseased tilapia were susceptible to amoxicillin, florfenicol, sulfamethoxazole/trimethoprim and sulfadimethoxine/ormetoprim, however, only 78 isolates were susceptible to enrofloxacin. Twenty‐two enrofloxacin‐resistant S. agalactiae isolates were further examined for mutations in the QRDRs of gyrA, gyrB, parC and parE genes. Twenty isolates had single base pair changed in the gyrA sequence, C‐242‐T. Point mutations in gyrB, GC‐1135, 1136‐AA and T‐1466‐G, were identified in one isolate. All resistant isolates harboured a mutation in the parC gene, C‐236‐A, while no mutations were observed in the parE gene. The study represented mutations of gyrA and parC genes as marked modification of the enrofloxacin‐resistant S. agalactiae from farmed tilapia. This study is a primary report of the QRDRs mutations associated with fluoroquinolone resistance from streptococcal pathogen in the cultured fish. The phenotypic and genotypic characterization of enrofloxacin resistance S. agalactiae evident in this study has led to an improved regulation of antimicrobial use in Thai aquaculture.  相似文献   

11.
Nile tilapia (Oreochromis niloticus) farming is an economic activity that is soaring in the whole world. Septicemia due to Streptococcus agalactiae is the main disease impacting fish farming. The aim of this study was to compare the gut microbiome of healthy animals and animals experimentally infected with S. agalactiae strain 21171A. The microbiome was established with 16S ribosomal DNA next‐generation sequencing (NGS). One hundred Nile tilapias, with an average weight of 35 g, were distributed into two groups. Fifty fish from the challenged group were orally inoculated with 100 μl of a bacterial solution containing 1.98 × 103 CFU/ml of S. agalactiae strain 21171A, while 50 controls were orally inoculated with sterile saline. After the experiment, 24 fish from the challenged group and 27 fish from the control group were analysed. For both groups, bacteria attached to the mucosa (M) and present in faeces (F) were analysed. The mean of the number of taxa identified in the infected group (M + F) (45.87 ± 30.13) was lower than in the control (M + F) (67.70 ± 21.10) (p < .01). Nineteen bacterial taxa were more abundant in faecal samples from the infected group when compared with the control group (p < .01). Thirty‐nine taxa were associated with mucosa samples from the challenged group when compared to the control samples (p < .01). No OTU was associated with healthy samples. The results demonstrate that the infection with S. agalactiae reduces the variability of the gut microbiota. Moreover, some bacteria proliferate during the infection.  相似文献   

12.
This study evaluated the inclusion of Aurantiochytrium sp. (ALL‐G‐RICH?), a source of docosahexaenoic acid (22:6 n‐3, DHA), in the diet of Nile tilapia and its effect on growth performance indexes and body composition. Fish (initial mean weight 8.35 ± 0.80 g) were fed different dietary inclusion levels of ALL‐G‐RICH?: 0.00, 0.05, 0.10, 0.20, and 0.40 g/kg and a control diet using cod liver oil (CLO), to provide DHA content comparable to the inclusion of 0.10 g/kg ALL‐G‐RICH?. Although there was no significant effect (p > 0.05) on weight gain, specific growth rate, feed conversion, protein retention rate, and proximal body composition, the inclusion of ALL‐G‐RICH? in the Nile tilapia diet influenced positively the fatty acid profile in the body, resulting in a high DHA concentration. CLO‐fed fish accumulated significantly more DHA compared to those fed 0.10 g/kg ALL‐G‐RICH? (p < 0.05). A digestibility trial was also performed for ALL‐G‐RICH with 65.86 g mean‐initial‐weight fish. The digestibility was high for DHA (96.10%); however, it was low for palmitic acid (70.81%). The results show that the inclusion of up to 0.40 g/kg ALL‐G‐RICH? can be used in Nile tilapia diets without impairing growth performance.  相似文献   

13.
Streptococcus agalactiae infections in fish are predominantly caused by beta‐haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non‐haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10cfu per fish, whereas ST23 does not cause disease at 10cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR‐based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish‐derived strains. Several fish‐associated genes encode proteins that potentially provide fitness in the aquatic environment.  相似文献   

14.
This study was carried out to evaluate the effects of dietary supplementation of thermotolerant bacterium on growth and immune responses of Nile tilapia (Oreochromis niloticus). Bacillus paralicheniformis SO‐1 was isolated from marine environments and incorporated into four isonitrogenous (300g/kg crude protein; cp) and isocaloric (18 MJ/kg) diets at four concentrations: 0, 5, 10 and 20 g/kg diet. Each diet was fed to triplicate groups of Nile tilapia (41.5 ± 0.5 g average weight) at a daily rate of 3% of their biomass, three times a day for 50 days. At the end of the feeding trial, the growth rates, feed utilization efficiency (feed conversion ratio, protein efficiency ratio, protein productive value), digestive enzymes (protease, amylase and lipase) activities, immunological response (serum lysozyme activity, phagocytic activity, respiratory burst and superoxide dismutase activity) and the expression of immune‐related genes [interleukin‐1 (IL‐1), interleukin‐4 (IL‐4) and interleukin‐12 (IL‐12)] were determined. Growth rates, digestive enzymes activities and immunological parameters were significantly improved (p < 0.05) with increasing supplemental SO‐1 up to 10 g/kg. However, further increase in bacterial concentration to 20 g/kg lead to significant decline in fish performance and immune response (p < 0.05). The expression of IL‐1, IL‐4 and IL‐12 genes was significantly up‐regulated (p < 0.05) in the liver of Nile tilapia fed SO‐1‐treated diets. This study clearly demonstrated that B. paralicheniformis SO‐1 could be considered as an efficient growth promoter and immune‐stimulating probiotic for farmed Nile tilapia.  相似文献   

15.
Streptococcus agalactiae causes a severe systemic disease in fish, and the routes of entry are still ill‐defined. To address this issue, two groups of 33 red tilapia Oreochromis spp. each of 10 g were orally infected with Sagalactiae (n = 30), and by immersion (n = 30), six individuals were control‐uninfected fish. Three tilapias were killed at each time point from 30 min to 96 h post‐inoculation (pi); controls were killed at 96 h. Samples from most tissues were examined by haematoxylin–eosin (H&E), indirect immunoperoxidase (IPI) and periodic acid‐Schiff; only intestine from fish infected by gavage was evaluated by transmission electron microscopy. The results of both experiments suggest that the main entry site of S. agalactiae in tilapia is the gastrointestinal epithelium; mucus seems to play an important defensive role, and environmental conditions may be an important predisposing factor for the infection.  相似文献   

16.
Nile tilapia (Oreochromis niloticus) juveniles were fed diets containing 13 g/kg total polyunsaturated fatty acids (PUFAs) at different n‐3/n‐6 dietary ratios (0.2, 0.5, 0.8, 1.3 and 2.9) for 56 days, at 28°C. Subsequently, fish were submitted to a winter‐onset simulation (22°C) for 33 days. PUFA n‐3/n‐6 dietary ratios did not affect fish growth at either temperature. At 28°C, tilapia body fat composition increased with decreasing dietary PUFA n‐3/n‐6. Winter‐onset simulation significantly changed feed intake. The lowest dietary n‐3/n‐6 ratio resulted in the highest feed intake. At both temperatures, body concentrations of α‐linolenic acid, docosahexaenoic acid, eicosatrienoic acid and docosapentaenoic acid decreased as dietary n‐3/n‐6 decreased. Body concentrations of eicosapentaenoic acid (EPA, 20:5 n‐3) increased with decreasing concentrations of dietary EPA. The n‐6 fatty acids with the highest concentrations in tilapia bodies were linoleic acid and arachidonic acid (ARA, 20:4 n‐6). At 28°C, SREBP1 gene expression was upregulated in tilapia fed the lowest n‐3/n‐6 diet compared to tilapia fed the highest n‐3/n‐6 ratio diet. Our results demonstrate that a dietary PUFA of 13 g/kg, regardless of the n‐3/n‐6 ratio, can promote weight gains of 2.65 g/fish per day at 28°C and 2.35 g/fish per day at 22°C.  相似文献   

17.
This study evaluated the effects of the probiotic Lactobacillus plantarum as dietary supplement on growth performance, haemato‐immunological responses, microbiology, histology and transmission electron microscopy of the intestinal epithelium of Nile tilapia challenged with Streptococcus agalactiae. Fish were distributed into two groups: control (unsupplemented) group and the group fed L. plantarum supplemented diet for a period of 58 days. We observed an increase in the concentration of lactic acid bacteria and a reduction in the number of Vibrionaceae in supplemented fish. A significant increase in the final weight, specific growth rate and feed efficiency was also observed in supplemented fish. After challenge, the number of thrombocytes and neutrophils also increased in supplemented animals. Transmission electron microscopy showed damage to the intestinal mucosa and the presence of bacteria similar to S. agalactiae in both infected groups. L. plantarum colonized the intestines of fish, enhanced the growth performance and modulated some haematological parameters.  相似文献   

18.
19.
Toll‐like receptors (TLRs) play an indispensable role in fish immunity, being involved in pathogen recognition and the triggering of immune reactions. Here, a member of the TLR family, TLR1, from Lateolabrax japonicus was characterized and its expression pattern and intracellular localization were analysed. The full‐length LjTLR1 cDNA (2,755 bp) was found to encode a polypeptide of 827 amino acids. The deduced amino acid sequence contained three main structural domains: an extracellular leucine‐rich repeat domain, a transmembrane domain and a Toll/IL‐1 receptor domain. Tissue distribution analysis indicated that LjTLR1 was expressed in all of the examined tissues to varying degrees, with the highest levels being measured in the head kidney. In order to assess the antibacterial functions of LjTLR1 during infection, the pathogenic bacteria Vibrio harveyi and Streptococcus agalactiae were used. LjTLR1 was significantly upregulated in the three immune organs (the head kidney, spleen and liver) following bacterial stimulation, and its expression was detected 6 hr after initial exposure. In mRNA in situ hybridization experiments, positive signals were more numerous in the treatment group than the control group, verifying the expression patterns observed. Assessment of the intracellular localization of LjTLR1 revealed it to be present in the cytoplasm. These results indicate the potential role of LjTLR1 in immune responses to bacterial infection. This study enriches our knowledge of L. japonicus immune genes and provides a theoretical basis for further research concerning the antibacterial functions of fish TLRs during infection.  相似文献   

20.
This study assessed the immune response of Nile tilapia (Oreochromis niloticus L.) after feeding on different levels (0.1%, 0.2% and 0.4%) of dietary Indian lotus (Nelumbo nucifera) leaf powder for 45 days. We evaluated both the nonspecific immune response at the end of the feeding period and the resistance to Aeromonas hydrophila. Exposure to Indian lotus resulted in a significant elevation in serum total globulins, serum lysozyme activity, serum killing percentage and the phagocytic activity (p < 0.05). Total serum protein and albumin showed no remarkable variation between tilapia fed on 0.1% Indian lotus and the control group (p > 0.05). In addition, the relative expressions of immune‐related genes, namely interleukin–1β and tumour necrosis factor–α were significantly up‐regulated in tilapia fed on 0.4% Indian lotus as compared to the control group; their expressions were down‐regulated in the other tested groups (p < 0.05). The survival rate of Nile tilapia postchallenge to A. hydrophila reported a significant and dose‐dependent increase in the Indian lotus‐supplemented groups (p < 0.05). Therefore, dietary incorporation of Indian lotus leaves (0.4%, 0.2% and 0.1%) could strengthen the immunity of Nile tilapia and improve its resistance to A. hydrophila infection. Therefore, Indian lotus leaves could serve as potential feed supplements for Nile tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号