首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

2.
A feeding trial was conducted to study the effect of dietary lipid on growth performance and heat‐shock protein (HSP70 and HSP60) response of white seabass (WSB), Atractoscion nobilis. Five diets were formulated to contain 440 g kg?1 protein from 300 g kg?1 fish meal, 240 g kg?1 soybean meal and 100 g kg?1 soy protein concentrate with different levels of lipid: 100, 120, 140, 160 or 180 g kg?1. At the end of the trial, heat shock response based on HSP70 and HSP60 was measured in liver and white muscle from fish at ambient temperature and temperature shock conditions. Final weight and percent gain were significantly higher for fish fed the 100 g kg?1 lipid diet than for fish fed the rest of the diets (P ≤ 0.05). Feed conversion ratio was lowest for fish fed the 100 g kg?1 lipid diet. The HSP70 and HSP60 responses were positively correlated to dietary lipid levels following temperature shock. At ambient temperature, HSP60 and HSP70 responses in muscle and HSP60 response in liver increased with dietary lipid level. Temperature shock significantly increased the HSP response of fish in all treatments. Results of this study demonstrated that a moderate (110–120 g kg?1) level of dietary lipids would be recommended for production diets but a higher dietary lipid level may be required for optimal stress tolerance.  相似文献   

3.
A feeding trial was conducted to investigate the effects of different levels of calcium (Ca) on growth and tissue mineralization in Japanese seabass, Lateolabrax japonicus. Six experimental diets were formulated to contain different levels of Ca (2.9, 4.2, 6.5, 7.9, 10.2 and 31.0 g kg?1) from dietary ingredients and Ca‐lactate·5H2O. The diets were fed to three triplicate groups of Japanese seabass (initial weight, 12.5 ± 0.0 g) for 56 days. Dietary Ca had no significant effect on survival or feed efficiency; however, the highest Ca (31.0 g kg?1) diet significantly reduced weight gain, feeding rate and whole‐body and muscle protein and lipid contents, as well as serum Ca concentration and alkaline phosphatase activity. A significant reduction in vertebral Ca, P, Zn, Fe and Mn contents and scale Ca, P, Mg and Mn contents was observed in Japanese seabass as dietary Ca level increased. Deformed fish were primarily found in the 2.9 and 31.0 g Ca kg?1 groups, indicating that these fish had poor bone mineralization.  相似文献   

4.
Two 8‐week feeding trials were conducted to evaluate soybean meal (SBM) as a fish meal substitute in diets for Japanese seabass, Lateolabrax japonicas. In trial I, a control diet (C) contained 400 g kg?1 fish meal, and 20%, 40%, 60% and 80% of the fish meal were replaced with SBM, supplied with 3 g kg?1 DL‐methionine and 2 g kg?1 L‐lysine (S20, S40, S60 and S80). In trial II, 60% and 80% of the fish meal in diet C were replaced with SBM, supplied with DL‐methionine at 3 g kg?1 (S60, S80) or 6 to 7 g kg?1 (RS60, RS80). The feed intake was lower in fish fed diet C than in fish fed diets S20, S40, S60 and S80 (trial I). No significant differences were found in the weight gain, nitrogen retention efficiency and body composition between fish fed diets C, S20, S40 and S60 (trial I), between fish fed diets S60 and RS60 or between fish fed diets S80 and RS80 (trial II). This study indicates that dietary fish meal level for Japanese seabass can be reduced to 160 g kg?1 by using SBM as a fish meal substitute.  相似文献   

5.
Discovering natural carotenoids for colour enhancement and health benefits of fish is important to develop new feed formulations. We have purified natural bixin from achiote seeds and evaluated the effect of colour enhancing and pigmentation in goldfish. Varying levels of bixin‐based diets were prepared with 420 g kg?1 of crude protein and 120 g kg?1 of lipid content. Our results clearly showed that bixin (0.05, 0.10, 0.20 and 0.60 g kg?1) based diets significantly (P < 0.05) enhanced the skin and fin colour at 30 and 60 days compared to diet without bixin. Interestingly, diet which contains 0.20 g kg?1 bixin and commercial feed (with astaxanthin) had similar effect on carotenoid deposition in skin. Moreover, total carotenoid deposition in fin was higher than in skin of all bixin‐containing diets. However, 0.60 g kg?1 bixin‐containing diet had lower specific growth rate (1.01 ± 0.01) and higher feed conversion ratio (2.05 ± 0.19) compared to the control group. The present results demonstrate that achiote bixin can be successfully used as an alternative natural carotenoid source against synthetic astaxanthin in fish feed. Our data indicate that 0.20 g kg?1 is a suitable dietary level of bixin to ensure strong pigmentation, acceptable growth and feed utilization in goldfish.  相似文献   

6.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

7.
A total of 180 Labeo rohita fry (≈1 g) were distributed into six treatment groups with three replicates each. Six isoenergetic (15.8 kJ g?1) diets were prepared with varying levels of protein (CP) and gelatinized carbohydrate (GC), viz. D1: 450 g kg?1 CP, 258 g kg?1 GC; D2: 400 g kg?1 CP, 302 g kg?1 GC; D3: 350 g kg?1 CP, 399 g kg?1 GC; D4: 301 g kg?1 CP, 447 g kg?1 GC; D5: 249 g kg?1 CP, 517 g kg?1 GC and control diet, D6: 400 g kg?1 CP, 468 g kg?1 GC and these were fed to fish at 40 g kg?1 wet body weight per day for 60 days. Highest growth was recorded for fish fed D4, decreasing for D5. Protein utilization, amylase activity and carbohydrate digestibility were significantly positively correlated with GC (P < 0.05) and were highest in fish fed D5. Hypertrophy of hepatic cells was only recorded for D5. Lysine, which may be affected during gelatinization, was estimated in diets and found to be above the minimum level required. Survival rate was unaffected by diet. The results of the present study indicate that a diet containing 450 g kg?1 GC and 300 g kg?1 CP was efficiently utilized by L. rohita fry.  相似文献   

8.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

9.
A feeding trial was conducted to determine the optimum level and effect of incremental dietary levels of docosahexaenoic acid (DHA, 22:6n‐3) on growth and non‐specific immune responses in juvenile rock bream, Oplegnathus fasciatus. A basal diet without DHA supplementation was used as a control, and six other diets were prepared by supplementing with 4, 8, 12, 16, 20 or 40 g kg?1 DHA. These diets included no eicosapentaenoic acid and/or arachidonic acid contents. The actual DHA concentrations of the diets were 1, 4.8, 8.9, 13.1, 17.6, 21.2 and 41.4 g kg?1 diet (DHA1.0, DHA4.8, DHA8.9, DHA13.1, DHA17.6, DHA21.2 and DHA41.4 respectively). At the end of feeding trial, final body weight, weight gain, specific growth rate and feed efficiency of fish fed the DHA13.1, DHA17.6, DHA21.2 and DHA41.4 diets were significantly higher than those fed the other diets (P < 0.05). The broken‐line analysis of weight gain indicates that the optimum dietary DHA level is 11.9 g kg?1. Fish fed DHA1.0 had the highest hepatosomatic index, an increase in plasma cholesterol, triglyceride, low‐density lipoprotein and aspartate aminotransferase levels, as well as a decrease in high‐density lipoprotein. Superoxide dismutase activity of fish fed DHA13.1 and DHA17.6 diets was significantly higher than that of fish fed DHA1.0, DHA4.8 and DHA8.9 diets. Fish fed the DHA17.6, DHA21.2 and DHA41.4 diets showed significantly higher lysozyme activity than those fish fed DHA1.0, DHA4.8 and DHA8.9 diets. Therefore, the optimum dietary DHA level could be greater than 11.9 g kg?1 but less than 13.1 g kg?1 in diet.  相似文献   

10.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

11.
The present study investigated the optimum dietary protein level for the maturation of adult Pangasianodon hypophthalmus broodstock. Four isocaloric diets containing 250, 300, 350 and 400 g kg?1 of protein levels were prepared and presented to triplicate groups of fish. The fish (mean weight 770 ± 17.23 g and 712 ± 23.42 g for females and males respectively) were stocked in outdoor canvas tanks (4 m × 1 m × 1 m) at a stocking density of 20 fish/tank with a male: female ratio of 1:4. The fish were fed the test diets to satiation twice daily for 6 months. Gonadosomatic index (GSI) and fecundity were similar among fish fed dietary protein levels, higher than those fed on the 250 g kg?1. Final weight, weight gain, oocyte weight were significantly highest (< 0.05) for the fish fed 350 and 400 g kg?1 dietary protein treatments. Only the 350 g kg?1 dietary protein treatment resulted in significantly best ovipositor diameter and % ripe egg. Amino acid levels were highest in the muscle followed by the oocyte and liver of fish fed 350 and 400 g kg?1 dietary protein levels. The present results suggested that a dietary protein level of 350 g kg?1 can be recommended for the development of P. hypophthalmus broodstock.  相似文献   

12.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

13.
An 8‐week feeding trial was conducted to investigate the effects of different taurine levels on the growth performance of juvenile white shrimp fed with low‐fishmeal diets. Six level diets of dietary taurine were prepared by the supplementation of taurine (0, 0.4 g kg?1, 0.8 g kg?1, 1.2 g kg?1, 2.0 g kg?1 and 4.0 g kg?1) to a control diet (100 g kg?1 fish meal). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48 ± 0.0 g), each three times daily. Shrimp fed the 0.4 g kg?1 and 0.8 g kg?1 taurine‐supplemented diets, showed significantly higher weight gain, protein efficiency ratio and protein retention efficiency than those of shrimp fed the other diets. The quadratic regression analysis (y = ?55.59x2 + 187.1x + 750.2 R² = 0.587) indicated that a maximum weight gain occurring at 1.68 g kg?1 of taurine level. The whole body and hepatopancreas taurine contents of the taurine‐supplemented diets were on the same level and higher than those of the control group. Total free amino acid content in the hepatopancreas was significantly affected by taurine supplementation. The results of the present study demonstrate that the white shrimps require taurine as an essential nutrient for growth performance.  相似文献   

14.
A feeding trial was conducted to determine effects of dietary inosine on growth, immune responses, oxidative stress resistance and intestinal morphology of juvenile red sea bream. A semi‐purified basal diet supplemented with 0 (D1, control), 2 g kg?1 (D2), 4 g kg?1 (D3), 6 g kg?1 (D4) and 8 g kg?1 (D5) dietary inosine, respectively, to formulate five experimental diets. Each diet was randomly allocated to triplicate groups of fish (initial weight: 8 g). After 50 days of feeding trial, fish fed diets with 4 g kg?1 inosine had the highest (p < .05) final weight, weight gain and specific growth rate. Similarly, improved feed intake, feed conversion ratio and protein efficiency ratio were also found at 4 g kg?1 inosine supplemented group. Some non‐specific immune parameters such as total serum protein, lysozyme activity and bactericidal activity tended to be higher for fish fed diets supplemented with inosine. Peroxidase and catalase activity also influenced (p < .05) by dietary inosine supplementation. Fish fed 2 g kg?1 and 4 g kg?1 inosine supplemented diets showed the least oxidative stress condition. Inosine supplementation significantly increased (p < .05) anterior enterocyte height and posterior fold height, enterocyte height and microvillus height compared with control. We concluded that 4 g kg?1 dietary inosine supplementation effectively provokes growth and health performance of red sea bream by increasing growth, immune response, oxidative stress resistance and intestinal health condition.  相似文献   

15.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

16.
The aim of this experiment was to determine the effects of dietary inclusion with mannan oligosaccharide (Bio‐Mos, Alltech, Nicholasville, KY, USA) on growth, survival, physiological and immunological conditions and gut morphology of the black tiger prawn (Penaeus monodon). Five diets supplemented with MOS at 0 g kg?1 (control diet), 1, 2, 4 and 8 g kg?1 were fed to the prawn juveniles (0.4 ± 0.06 g, total weight) for the duration of 63 days. Growth was the highest (< 0.05) when the prawns were fed the 1 g kg?1 MOS included diet. Wet tail muscle index (Tw/B), dry tail muscle index (Td/B) and tail muscle protein (Tmp) were higher (< 0.05) in the prawns fed MOS included diets MOS compared with the prawns fed the control diet. Total haemocyte counts (THCs) of the prawns fed MOS included diets were higher (< 0.05) than THCs of the prawns fed the control diet. Epithelium layer and epidermal cell density of the gut of the prawns fed 1 g kg?1 and 2 g kg?1 MOS diets were better than the prawns fed the control and other MOS diets. The results imply a positive effect of dietary supplementation of 1–2 g kg?1 MOS in the culture of black tiger prawns.  相似文献   

17.
This study was conducted to investigate the effects of dietary inulin on growth performance, diet utilization, survival rate, carcass composition and digestive enzymes activities (amylase, lipase and protease) of carp (Cyprinus carpio) fry (0.55 ± 0.02 g). After acclimation, fish were allocated into 9 tanks (40 fish per tank) and triplicate fish groups were fed, control diet (0 g) or diets containing 5 g and 10 g inulin kg?1 for 7 weeks. No significant effect on growth performance and diet utilization of fish fed inulin compared with the control group was observed. However, supplementation of inulin significantly increased survival rate and carcass lipid content, while carcass protein content significantly decreased. Dietary inulin had no significant effects on digestive lipase, protease and amylase activities.  相似文献   

18.
This study was conducted to investigate the prebiotic effect of different Dietary Fibre Concentrates (DFC) (Mucilage =MG; Pectin = PN or β‐glucan + mannan = βg + M) on growth and somatic parameters, body composition and digestive enzyme activities of jundiá (Rhamdia quelen). After acclimation, fish (7.16 ± 0.06 g) were allocated into 24 tanks (30 fish per tank) and triplicate groups were fed with Control diet (0 g kg?1 of DFC); diet supplemented with 5 g kg?1 commercial prebiotic (CP) or diets supplemented with 5 or 10 g kg?1 diet of MG; PN or βg + M. At the end of the trial (8 weeks), growth was significantly (P < 0.05) higher in fish fed diets supplemented with DFCs and did not differ from animals supplemented with CP. The animals that were fed Control diet presented a body protein content higher compared to those supplemented with diets containing pectin or β‐glucan + mannan (P < 0.05). However, fish fed diets added with β‐glucan + mannan yielded a higher level of protein deposited in the whole body. The activity of digestive enzymes was lower in the group supplemented with Pectin. Results indicate that supplementation with DFCs in the diet had positive effects on the performance of jundiá and are prebiotic potential candidate.  相似文献   

19.
This study was conducted to determine the effects of dietary cellulase addition on improving the nutritive value of Chlorella for juvenile crucian carp Carassius auratus (initial body weight: 2.99 ± 0.02 g, mean ± SEM). Five isonitrogenous and isoenergetic experimental diets were formulated to contain 0.0 (control), 0.5, 1.0, 1.5 and 2.0 g kg?1 cellulase, respectively. Each experimental diet was randomly assigned to triplicate groups with 25 juvenile fish per fibreglass tank for 8 weeks. The results showed that weight gain, specific growth rate, feed intake and the trypsin activity in the anterior intestine increased with increasing dietary cellulase to 1.5 g kg?1 and then declined with further addition. However, the mRNA expression levels of Mrf4 and Myf5, the apparent digestibility coefficients for dry matter, protein, energy and the majority of amino acids, and the activity of lipase in the anterior intestine were highest in fish fed the 1.0 g kg?1 cellulase diet, and then tended to decline with further cellulase supplementation. In conclusion, the optimal dietary cellulase supplementation level was 1.0–1.5 g kg?1, which can improve growth performance, digestive activities and nutrient digestibility in crucian carp.  相似文献   

20.
A feeding trial was conducted on the effects of methionine hydroxy analog (MHA) and taurine supplementation in diets with high levels of soy protein concentrate (SPC) on the growth performance and amino acid composition of rainbow trout, Oncorhynchus mykiss (Walbaum) comparing with fish meal based diet. The control diet had 520 g kg?1 fish meal. In the methionine deficient diets (5.1 g kg?1), fish meal was replaced by 490 g kg?1 of the SPC in the SPC49 diet. The SPC49 diet was supplemented with either MHA (6 g kg?1) only or a combination of MHA and taurine (2 g kg?1). Fish were fed isoproteic (460 g kg?1) and isolipidic (130 g kg?1) diets for 12 weeks. Growth performance (i.e. weight, feed conversion ratio, and thermal‐unit growth coefficient) was inferior in fish fed the SPC49 diet. MHA supplementation improved growth performance (< 0.05). No difference was observed when taurine was added to the SPC49 and MHA diet (> 0.05). Whole‐body taurine contents increased with taurine supplementation, whereas plasma methionine increased with MHA supplementation (< 0.05). In conclusion, the substitution of fish meal with SPC supplemented with MHA did not negatively impact growth, and the addition of taurine did not improve growth performance in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号