首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
The effects of the herbicides hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] and chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide) on the metabolism of enzymatically isolated leaf cells from soybean [Glycine max (L.) Merr., cv. ‘Essex’] were examined. Photosynthesis, protein, ribonucleic acid (RNA), and lipid syntheses were assayed by the incorporation of specific radioactive substrates into the isolated soybean leaf cells. These specific substrates were NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetate, respectively. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was the most sensitive and first metabolic process inhibited by hexazinone. RNA and lipid syntheses were also inhibited significantly by hexazinone whereas the effect of this herbicide on protein synthesis was less. The most sensitive and first metabolic process inhibited by chlorsulfuron was lipid synthesis. Photosynthesis, RNA, and protein syntheses were affected significantly only by the highest concentration of this herbicide and longest exposure. Although these two herbicides may exert their herbicidal action by affecting other plant metabolic processes not examined in this study, hexazinone appears to be a strong photosynthetic inhibitor, while the herbicidal action of chlorsulfuron appeared to be related to its effects on lipid synthesis.  相似文献   

2.
Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

3.
The effects of the herbicide isouron and of its plant degradation products designated as metabolite l {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N-methylurea} and metabolite 2 {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-urea} on the metabolism of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr., cv. Essex] were compared under laboratory conditions. Photosynthesis, protein synthesis, ribonucleic acid synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, and [14C]-acetate, respectively, into the isolated cells. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10 and 100 μM of the three herbicides. The urea derivative of isouron (metabolite 2) was the least active of the three compounds. The activity of the mono-methylated derivative of isouron (metabolite 1) was comparable to that of isouron and the sensitivity of the four processes to both chemicals decreased in the order: photosynthesis > ribonucleic acid synthesis > lipid synthesis > protein synthesis. The concentration of isouron that caused a 50% inhibition of photosynthesis of the isolated soybean leaf cells was calculated at 0.51 μM. The effects of isouron and metabolite 1 on photosynthesis, lipid and RNA synthesis appeared to be independent of incubation lime as maximal inhibition occurred within 30 min. Inhibition of protein synthesis by both chemicals was time-dependent, increasing in magnitude with concomitant increases in incubation time.  相似文献   

4.
The effects of protein synthesis inhibitors on fenvalerate-withdrawal-dependent recovery in citrate synthase (CS), glucose 6-phosphate dehydrogenase (G6-PDH), lactate dehydrogenase (LDH), RNA, and protein of brain, liver, and skeletal muscle of Clarias batrachus were studied to explore possible mode of action of a pyrethroid insecticide at metabolic level. The administration of actinomycin D or cycloheximide inhibited partially or completely the withdrawal-dependent increase in enzyme activities, RNA, and protein contents, substantiating de novo synthesis of these macromolecules during recovery. The inhibition was more pronounced in response to cycloheximide reflecting recovery in translation process. This also suggests the possibility of fenvalerate-induced impairment of metabolism through inhibition of enzyme synthesis.  相似文献   

5.
The effect of acifluorfen and oxyfluorfen on chlorophyll bleaching, lipid peroxidation and photosynthesis in pea leaf discs was studied. Both her- bicides induced light-dependent bleaching and lipid peroxidation, the level of damage being greater at higher light intensities. Photosynthetic carbon dioxide fixation was only partially inhibited in treated leaf discs incubated in darkness, thus indicating that these herbicides did not inhibit photo- synthesis as a primary mode of action. Leaf discs maintained in darkness showed no visible signs of injury, and light-dependent herbicide-induced damage was reduced by incubating discs under nitrogen, orpre-incubating them with the electron-transport inhibitor monuron. It is suggested that acifluorfen and oxyfluorfen are activated by a light-dependent process, which requires photosynthetic electron transport.  相似文献   

6.
The action of the herbicides benzoylpropethyl and flampropisopropyl, and the corresponding unesterified acids was studied in rat liver mitochondria. The herbicides were found to (a) inhibit the mitochondrial electron transfer in complex III or at the level of ubiquinone (I50 of 4 nmol mg protein?1 for flampropisopropyl and 18 for benzoylpropethyl with succinate as a substrate); (b) have an additional (however less sensitive) site of inhibition near succinate dehydrogenase; and (c) interfere with energy transfer. Sensitivity was increased 2- (benzoylpropethyl) and 3.5-fold (flampropisopropyl) as the rats age increased from 12–13 weeks to 23–26 weeks. The free acids were far less effective. Since the herbicides benzoylpropethyl and flampropisopropyl are readily hydrolyzed by animals and since the free acids are less effective than the herbicides, it explains why these potentially harmful compounds have a low acute toxicity. Swelling studies in isoosmotic salts suggested that the two herbicides decrease membrane fluidity, an action which was assumed to be responsible for the electron transfer inhibition and, via inhibition of phosphate transport, the interference with energy transfer.  相似文献   

7.
Herbicides that target the acetolactate synthase (ALS) are among the most widely used weed control chemicals since their introduction into the marketplace in the early 1980s, including five classes (sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinylthio (or oxy)-benzoates and sulfonylamino-carbonyltriazolinones). The mechanism researches have progressed unprecedentedly in the last two decades. Primary mode of action of the ALS-inhibiting herbicides that interfere with the activity of ALS enzyme seems no longer in doubt. Three lines of investigation from physiology, genetics, molecular and chemical structure aspects came together to prove that ALS is the site of action. Researches on the effects of branched chain amino acids (BCAAs) synthesis or protein metabolism caused by ALS-inhibiting herbicide elicit lots of disputations. Besides these two main works, other secondary effects of ALS inhibition, such as buildup of 2-ketobutyrate (α-ketobutyrate or 2-KB) or 2-aminobutyrate (2-AB, the transamination product of 2-KB), depletion of intermediates of the pathway for some critical processes, disruption of photosynthesis transport and respiration system etc., have also been implicated in the mechanism of plant death. However, there are still some disputations and doubts on the precise mechanisms that need further probing into. Further more, as many ALS-inhibiting herbicides and their derivatives are chiral with one or even more enantiomers, which may behave quite differently in biochemical processes, the effects and the environmental fate of chiral herbicides need to be investigated stereospecifically. By this, we can have a better understanding about the herbicides and avoid unnecessary pollution load.  相似文献   

8.
CARL FEDTKE 《Weed Research》1972,12(4):325-336
Summary. Chlorfenprop-methyl, the active ingredient of the selective herbicide BIDISIN®, induces autolysis in the leaves of Avena fatua L. During this process the cellular hydrolytic enzynnes, normally inactive, degrade the polymeric proteins, starch and nucleic acids, leading to breakdown of the plant. The basic metabolic processes of respiration, photosynthesis, protein synthesis and RNA synthesis are not inhibited by chlorfenprop-methyl but become inactivated during autolysis.
Méemisme d'action de l'herbicide sélectif chlorfenprop-méthyle  相似文献   

9.
Broad-leaved plants are generally resistant to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides. In laboratory experiments, however, we confirmed that Acanthospermum hispidum , a Compositae weed, was susceptible to one of the AOPP herbicides, fluazifop-butyl, but tolerant to other AOPP herbicides (quizalofop-ethyl and fenoxaprop-ethyl) and a CHD herbicide (sethoxydim). The symptoms induced by fluazifop-butyl in A. hispidum (wilting and necrosis) were distinctly different from those induced in oat (chlorosis). The period required to cause seedling death of A. hispidum (48–72 h) was shorter than that of oat ( ca 15 days). The ( R )-enantiomer of fluazifop-butyl was more active on this weed. In oat, lipid biosynthesis and acetyl-CoA carboxylase (ACCase) activity were inhibited, and electrolyte leakage from the shoots was increased by fluazifop-butyl and sethoxydim. In the case of A. hispidum , the membrane permeability increased and the lipid biosynthesis was inhibited only by fluazifop-butyl. These results indicate that A. hispidum is particularly sensitive to fluazifop-butyl, and its mechanism of action in the plant may be different from its mechanism of action in oat.  相似文献   

10.
Triarimol (2 μg/ml) strongly inhibited multiplication of Ustilago maydis sporidia after one doubling, but growth continued and sporidia became abnormally large, branched and multicellular. Oxidation of glucose or acetate was not affected, and only slight limitations occurred in DNA, RNA and protein syntheses. The toxicant did not inhibit triglyceride synthesis but markedly increased the quantity and altered the quality of free fatty acids. Incorporation of [14C]acetate into ergosterol and an unidentified sterol was inhibited more than 90%, but incorporation into two other unidentified sterols was almost unaffected. Inhibition in the sterol biosynthetic pathway at a point preceeding ergosterol is regarded as a primary site of triarimol action in U. maydis.  相似文献   

11.
BACKGROUND: Herbicides that affect lipid metabolism have been used commercially for many years. Here, napropamide, diphenamid, dimethachlor and cafenstrole are compared; these have all been classified by the Herbicide Resistance Action Committee (HRAC) as K3 herbicides and inhibitors of cell division and/or synthesis of very‐long‐chain fatty acids (VLCFAs). In addition, spiro‐decanedione A and pinoxaden dione are compared as inhibitors of lipid synthesis through inhibition of acetyl‐CoA carboxylase (ACCase). RESULTS: Whereas the chloracetamide dimethachlor and the carboxyamide cafenstrole potently inhibited VLCFA synthesis in both barley and cucumber, the acetamides napropamide and diphenamid which are also classified as K3 herbicides and likewise the unclassified herbicide cinmethylin did not. The graminicide pinoxaden dione inhibited de novo fatty acid synthesis in barley, but not in cucumber, and correspondingly inhibited the plastid form of maize ACCase much more than the cytosolic form (IC50 values of 0.1 and 17 µM ). By contrast, spiro‐decanedione A exhibited herbicidal effects not only on grasses but also on broad leaves, strongly inhibited maize cytosolic ACCase and inhibited synthesis of VLCFAs in cucumber. CONCLUSIONS: The acetamides napropamide and diphenamid, which do not inhibit VLCFA synthesis, should be classified separately from K3 herbicides that do. Pinoxaden dione and spiro‐decanedione A represent new classes of chemicals acting on plant lipid synthesis. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
Three rapid bioassays were tested on forty-two herbicides having several different modes of action. A 50% or greater inhibition of growth was found at 1 ppm with thirty-one herbicides in one or more of the bioassays. Of the remaining eleven herbicides, seven were detected at 10 ppm, two at 20 ppm and two at 30 ppm. The techniques used were a Chlorella bioassay, a root bioassay with sorghum, oat and cucumber and a shoot bioassay with sorghum and oat. The duration of the bioassays was 1, 2 and 4 days respectively. As a general rule, the Chlorella bioassay was especially sensitive to photosynthetic and respiratory inhibitors but not sensitive to herbicides with other modes of action, whereas the root and/or shoot bioassays were sensitive to most of the herbicides except the photosynthetic inhibitors. The use of the three bioassays simultaneously is suggested as a possible method for primary screening of herbicides.  相似文献   

13.
The acylalanine fungicides CGA 29212 and metalaxyl inhibit colony growth of Phytophthora megasperma f. sp. medicaginis at much lower concentrations than structurally related chloroacetanilide herbicides. Metolachlor, among the latter, shows the highest antifungal activity, followed by propachlor. Dimethachlor and alachlor are only weakly inhibitory. A metalaxyl- and CGA 29212-resistant strain of P. megasperma f. sp. medicaginis shows cross-resistance to metolachlor and propachlor, but levels of resistance are much lower than observed with CGA 29212 and metalaxyl. Cross-resistance does not occur to dimethachlor and alachlor. All compounds except metalaxyl inhibit uptake of [3H]uridine by mycelium, propachlor being most effective. Effects are similar with both a metalaxyl-sensitive and a -resistant strain. CGA 29212, metalaxyl, and metolachlor inhibit incorporation of [3H]uridine into RNA by mycelium of the sensitive strain at concentrations not inhibitory to uptake. Metalaxyl slightly affects incorporation by mycelium of the resistant strain; the other compounds have a more pronounced effect but only at concentrations inhibitory to uptake. Metalaxyl, CGA 29212, and propachlor do not induce leakage of radioactivity from mycelium of both strains when added at high concentrations to cultures previously incubated with [3H]uridine; under these conditions incorporation by mycelium of the metalaxyl-resistant strain is significantly more affected by CGA 29212 and propachlor than by metalaxyl. Endogenous RNA polymerase activity of isolated nuclei from a metalaxyl-sensitive strain is inhibited by CGA 29212, metalaxyl, and metolachlor but not by propachlor, dimethachlor, and alachlor. Neither compound has any effect on endogenous RNA polymerase activity of isolated nuclei from a metalaxyl-resistant strain. CGA 29212 and metolachlor evidently have a metalaxyl-type of action. The presence of cross-resistance of the metalaxyl-resistant strain to propachlor also indicates a metalaxyl-type of action for this compound, although this could not be confirmed by an inhibitory effect of propachlor on endogenous RNA polymerase activity. In addition to a metalaxyl-type of action, CGA 29212, metolachlor, and propachlor have a second one that is also present in dimethachlor and alachlor, which lack the metalaxyl-type of action. The second mechanism of action, involving inhibition of [3H]uridine uptake, is most prominent with propachlor and might be related to the primary mechanism of action in plants of the chloroacetanilide herbicides.  相似文献   

14.
Photosynthesis is the single most important source of O2 and organic chemical energy necessary to support all non-autotrophic life forms. Plants compartmentalize this elaborate biochemical process within chloroplasts in order to safely harness the power of solar energy and convert it into usable chemical units. Stresses (biotic or abiotic) that challenge the integrity of the plant cell are likely to affect photosynthesis and alter chlorophyll fluorescence. A simple three-step assay was developed to test selected herbicides representative of the known herbicide mechanisms of action and a number of natural phytotoxins to determine their effect on photosynthesis as measured by chlorophyll fluorescence. The most active compounds were those interacting directly with photosynthesis (inhibitors of photosystem I and II), those inhibiting carotenoid synthesis, and those with mechanisms of action generating reactive oxygen species and lipid peroxidation (uncouplers and inhibitors of protoporphyrinogen oxidase). Other active compounds targeted lipids (very-long-chain fatty acid synthase and removal of cuticular waxes). Therefore, induced chlorophyll fluorescence is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity.  相似文献   

15.
The effect of four photosynthetic inhibitor herbicides, bromacil, ioxynil, metribuzin and monuron, on chloroplast electron transport was investigated. All four compounds completely inhibited electron flow with tripotassium hexacyanoferrate as oxidant, but the inhibition caused by bromacil, metribuzin and monuron was almost totally reversed by trypsin treatment. With ioxynil, only a partial degree of reversability was shown. With a molybdosilicate as oxidant, electron transport was not completely inhibited by any of the herbicides. Whereas the partial inhibition was reversed by tryptic digestion in the presence of bromacil, metribuzin and monuron, there was virtually no reversal in the presence of ioxynil. The results suggest a common site of action for all four herbicides and an additional site for ioxynil nearer to photosystem II.  相似文献   

16.
Triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-(1,2,4-triazol-1-yl)-2-butanone], 1.5–2.0 μ/ml, inhibited the multiplication of sporidia of Ustilago avenae more strongly than it did the increase of dry weight. The treated sporidia appeared swollen, multicellular, and branched. At concentrations of 1.5–100 μg of triadimefon/ml, the oxidation of glucose was not affected. Increase in dry weight and synthesis of protein, RNA, and DNA were inhibited slightly, whereas cell division was acutely arrested. After an incubation period of 9.5 hr, microscopic studies revealed that daughter cells of the treated sporidia also contained one nucleus. In sporidia treated for 6 hr with triadimefon, both the total lipid content and its composition of fatty acids were not appreciably altered. The treated cells, however, differed from control cells by a higher content of free fatty acids. Triadimefon markedly interfered in sterol biosynthesis in Ustilago avenae. Gas chromatographic (glc) analysis and [14C]acetate incorporation studies indicated that ergosterol biosynthesis was almost completely inhibited by triadimefon; on the other hand, sterol compounds representing precursors of ergosterol (probably 4,4-dimethyl and C-4-methyl sterols) accumulated in treated sporidia. As the results indicate, the inhibition of conversion of immediate sterol precursors to ergosterol may be regarded as the primary target for the action of triadimefon in Ustilago avenae.  相似文献   

17.
The mechanisms of action against Botrytis cinerea of the dicarboximide fungicides vinclozolin ( I ), procyrnidone ( II ), iprodione ( III ) and the less closely related compound prochloraza ( IV ) have been compared. They all inhibited mycelial growth much more than spore germination. None of the compounds affected respiration, membrane permeability or RNA production but III inhibited DNA synthesis and IV inhibited protein synthesis. Although chitin biosynthesis was inhibited by all the fungicides it was barely affected at the ED50 concentrations (the concentration required to reduce the growth or germination of the test species by 50%) and is thus unlikely to be the primary target. The fungicides altered fungal lipid composition. I and II inhibited triglyceride production but III had no effect on it; III and IV reduced sterol biosynthesis. No common primary mode of action was found.  相似文献   

18.
Isolated spinach (Spinacia oleracea L.) chloroplasts contain a Mg+2-dependent ATPase that is activated by light in the presence of dithiothreitol (DTT) and phenazine methosulfate (PMS). Effects of 11 herbicides, known to affect photophosphorylation in isolated chloroplasts, were measured on ATPase activity when added prior to illumination, on the postillumination dark activity of the ATPase, and on the light-induced synthesis of ATP mediated by DTT and PMS.When added prior to illumination, activity of the ATPase was stimulated by low, and inhibited by high, molar concentrations of chlorpropham, dicryl, dinoseb, ioxynil, oryzalin, perfluidone, propanil, and 4,6,7-trichloro-2-(trifluoromethyl)benzimidazole (TCTFB). The light activation of the ATPase was not affected by diuron, bromacil, or atrazine. Perfluidone, dinoseb, ioxynil, and TCTFB stimulated, whereas chlorpropham, dicryl, oryzalin, propanil, atrazine, bromacil, and diuron had no effect on postillumination hydrolytic activity. The light-induced synthesis of ATP mediated by DTT and PMS was inhibited strongly by chlorpropham, dicryl, dinoseb, ioxynil, oryzalin, perfluidone, propanil, and TCTFB.Because the ATPase reactions are considered to represent the reversal of the terminal reactions of photophosphorylation, inhibition of these reactions implies that the compounds tested, except for diuron, atrazine, and bromacil, have a site of action on the ATP-generating pathway that is separate from the site involved in the inhibition of the Hill reaction.  相似文献   

19.
Propanil and swep inhibit 4-coumarate:CoA ligase activity in vitro   总被引:1,自引:0,他引:1  
4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) in the phenylpropanoid pathway in plants has attracted interest as a novel target for developing effective plant growth inhibitors (PGIs). In a previous study in which the 4CL inhibitory activity of 28 existing herbicides was investigated using an optimized in vitro screening assay, 4CL activity was found to be strongly inhibited by propanil and swep at 100 microM. Here, further experimental evidence is provided to substantiate the previous result. Using 4-coumaric acid as substrate, tobacco 4CL activity was inhibited by propanil or swep in a concentration-dependent manner, with 50% inhibition concentrations (I(50)) of 39.6 and 6 microM respectively. These herbicides also exhibited uncompetitive inhibition towards 4-coumaric acid. Furthermore, 4CLs from several plant species were inhibited by the herbicides within a range from 1 to 50 microM. It is proposed that these herbicides have another site of action as a result of the inhibition of 4CL in the phenylpropanoid pathway, and this enzyme represents a new target site for the development of PGI.  相似文献   

20.
The effect of asulam (methyl (4-aminobenzenesulphonyl) carbamate) on the synthesis of RNA and protein was investigated in bracken sporeling plants and excised rhizome bud tissue. Foliage application of asulam (4.4 kg/ha) reduced the RNA levels in frond buds and young fronds within 3 days, while protein levels were significantly reduced after 14 days. A significant reduction in respiratory activity of buds was observed after 2 weeks, the level of inhibition being 54% after 8 weeks. During a 3-h incubation period, O2 uptake by excised bud issue was stimulated by 5 and 10 ppm asulam and inhibited by higher concentrations; 32P uptake was inhibited at all concentrations. Asulam (5 ppm and above) inhibited bud growth and reduced RNA and protein levels in incubated buds (20 h at 30°C), and the incorporation of [14C]orotic acid into RNA and [14C]leucine into protein. Reduction of RNA levels and inhibition of [14C]ladenine incorporation into RNA in buds occurred entirely in the ribosomal and supernatant fractions of the cellular extract. Inhibition of RNA synthesis by asulam (50 ppm) as measured by [14C] orotic acid incorporation into RNA was completely antagonized by CEPA (3-chloroethylphosphonic acid) (50 ppm) and partially by 2,4-D (2,4-dichlorophenoxyacetic acid) (50 ppm) and GA (Gibberellic acid) (50 ppm). These results suggest that the interference of asulam with RNA and protein synthesis at the metabolically active sinks (rhizome buds) could be one of its major mechanisms of action in bracken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号