首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 771 毫秒
1.
T. Rder  P. Racca  E. Jrg  B. Hau 《EPPO Bulletin》2007,37(2):378-382
During a three‐year project from 2003 to 2006, two models have been developed to predict leaf rust (Puccinia recondita and P. triticina) occurrence and to simulate disease incidence progress curves on the upper leaf layers of winter rye (PUCREC) and winter wheat (PUCTRI). As input parameters the models use air temperature, relative humidity and precipitation. PUCREC and PUCTRI firstly calculate daily infection favourability and a cumulative infection pressure index and, in a second step, disease incidence is estimated. An ontogenetic model (SIMONTO) is used to link disease predictions to crop development. PUCREC and PUCTRI have been validated with data from 2001 to 2005. Both models give satisfactory results in simulating leaf rust epidemics and forecasting dates when action thresholds for leaf rust control are exceeded.  相似文献   

2.
Although much is known about the effect of climatic conditions on the development of peacock leaf spot of olive, field‐operational models predicting disease outbreaks are lacking. With the aim of developing such models, a 10‐year survey was conducted to relate leaf infection to climate parameters that can be easily monitored in the field. As outbreaks of disease are known to be linked to rain, models were evaluated for their ability to predict whether infection would occur following a rain event, depending on air temperature and duration of relative humidity above 85%. A total of 134 rain events followed by confirmed leaf infection and 191 rain events not followed by detectable infection were examined. The field data were adequately fitted (both specificity and sensitivity >0·97) with either a multilayer neural network or with two of six tested regression models describing high boundary values of high humidity duration, above which no infection occurred over the temperature range, and low boundary values below which no infection occurred. The data also allowed the selection of a model successfully relating the duration of latent period (time between infection and the first detection of leaf spots) as a function of air temperature after the beginning of rain (R2 > 0·98). The predictive abilities of these models were confirmed during 2 years of testing in commercial olive orchards in southern France. They should thus provide useful forecasting tools for the rational application of treatments and foster a reduction in fungicide use against this major disease of olive.  相似文献   

3.
Recent development of site‐specific weed management strategies suggests patch application of herbicides to avoid their excessive use in crops. The estimation of infestation of weeds and control thresholds are important components for taking spray decisions. If weed pressure is below a certain level in some parts of the field and if late germinating weeds do not affect yield, it may not be necessary the spray such places from an economic point of view. Consequently, it makes sense to develop weed control thresholds for patch spraying, based on weed cover early in the growing season. In Danish maize field experiments conducted from 2010 to 2012, we estimated competitive ability parameters and control thresholds of naturally established weed populations in the context of decision‐making for patch spraying. The most frequent weed was Chenopodium album, accompanied by Capsella bursa‐pastoris, Cirsium arvense, Lamium amplexicaule, Tripleurospermum inodorum, Poa annua, Polygonum aviculare, Polygonum persicaria, Stellaria media and Veronica persica. Relative leaf cover of weeds was estimated using an image analysis method. The relation between relative weed leaf cover and yield loss was analysed by nonlinear regression models. The competitive ability parameters and economic thresholds were estimated from the regression models. The competitive ability of weed mixtures was influenced by the increasing proportion of large size weeds in the mixtures. There was no significant effect of weeds which survived or established after the first herbicide application, indicating that early image analysis was robust for use under these conditions.  相似文献   

4.
High concentrations of the mycotoxin deoxynivalenol (DON), produced by Fusarium graminearum have occurred frequently in Norwegian oats recently. Early prediction of DON levels is important for farmers, authorities and the Cereal Industry. In this study, the main weather factors influencing mycotoxin accumulation were identified and two models to predict the risk of DON in oat grains in Norway were developed: (1) as a warning system for farmers to decide if and when to treat with fungicide, and (2) for authorities and industry to use at harvest to identify potential food safety problems. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). A mathematical model was developed and used to estimate phenology windows of growth stages in oats (tillering, flowering etc.). Weather summarisations were then calculated within these windows, and the Spearman rank correlation factor calculated between DON-contamination in oats at harvest and the weather summarisations for each phenological window. DON contamination was most clearly associated with the weather conditions around flowering and close to harvest. Warm, rainy and humid weather during and around flowering increased the risk of DON accumulation in oats, as did dry periods during germination/seedling growth and tillering. Prior to harvest, warm and humid weather conditions followed by cool and dry conditions were associated with a decreased risk of DON accumulation. A prediction model, including only pre-flowering weather conditions, adequately forecasted risk of DON contamination in oat, and can aid in decisions about fungicide treatments.  相似文献   

5.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

6.
Novel catabolic pathways enabling rapid detoxification of s‐triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s‐triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s‐triazine herbicides for weed control, and, with the exception of acidic soil conditions and s‐triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s‐triazine‐adapted relative to non‐adapted soils. From an environmental standpoint, the off‐site loss of total s‐triazine residues could be overestimated 13‐fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s‐triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

7.
L. LESCAR 《EPPO Bulletin》1981,11(3):337-346
Fungicide use is rapidly increasing on cereal crops in France: 40 % of the area (3 million ha) was treated at least once in 1980. The yield increases due to these treatments are sometimes very large (up to 1.5 or 2 tonne/ha), but are also very variable. Rational use of fungicides is therefore only possible if reliable practical methods are developed for the farmers. Research in France since 1971 has led to the development of a risk assessment table for the north of France based on the disease status of the crops and on the conditions of its cultivation. Current research seeks to improve this table by bringing climatic factors into account. Models for forecasting disease are currently being examined (Pseudocercosporella herpotrichoides) and a control strategy is proposed. It is envisaged that, with the development of improved forecasting models for the major diseases, it will be possible to predict, and to account for, the effects of fungicides on yield.  相似文献   

8.
T. Rosa 《EPPO Bulletin》2000,30(1):83-86
The forecasting and warning system in Portugal started in 1964 with a control programme applied against Plasmopara viticola, the most important pathogen of grapevine. Since then, studies and new techniques have been developed and applied to other important pests of vineyards and orchards, on the basis of epidemiological and climatic data that supports technical evaluation of the risk. In the last few years, mathematical models have been evaluated as an important part of the control strategy, integrated with biological data from field monitoring. At the moment, forecasting models are available for Plasmopara viticola, Venturia pirina, Venturia inaequalis and Cydia pomonella. The integration of forecasting models with field observations is used to formulate warnings that are sent out to farmers about the need to spray or not.  相似文献   

9.
In Europe and North America, deoxynivalenol (DON) is the most prevalent mycotoxin associated with wheat head blight caused by Fusarium graminearum and Fusarium culmorum. Because DON is toxic to plants and enhances the ability of the pathogen to spread within a spike, wheat lines with resistance to DON should be more resistant to head blight. Resistance to DON has been associated with resistance gene Fhb1 that confers resistance to spread within a spike. The objectives of this study were to determine if wheat lines resistant to head blight were also resistant to DON, if genes other than Fhb1 confer resistance to DON, and to identify lines able to fill grain in the presence of DON. Susceptible controls and diverse North American and European winter wheat lines with resistance to head blight were screened for molecular markers linked to known head blight resistance genes, and evaluated in a greenhouse for resistance to DON and relative yield after application of DON to spikes at flowering. Fhb1 appeared to have the unique ability to confer resistance to DON, as measured by the number of DON‐bleached primary florets. However, this resistance did not protect plants from the phytotoxic effects of DON on kernel formation as measured by the relative yield of treated spikes. Furthermore, measuring the relative yield loss following DON application may be useful for identifying lines with tolerance to head blight.  相似文献   

10.
Apple scab (Venturia inaequalis) represents the most serious pathogen and disease in orchards worldwide and has to be treated with a number of fungicides available on the market. In Germany, prophylactic application schedules have been banished in the past because of the availability of several commercial systems that forecast infection risk precisely. Experience with decision aids such as HP‐100, Welte, METOS and RIMpro in the Rheinland region of Germany in 1998/99 is presented and discussed. All systems serve as decision aids for forecasting potential infection periods, but do not provide a season‐long forecasting system based on data obtained 3–6 months in advance.  相似文献   

11.
The risk of between‐field spread of disease is typically omitted from crop disease warning systems, as it is difficult to know the number and location of inoculum sources and thus predict the abundance of inoculum arriving at healthy crops. This study explores the utility of a simple approach to predicting risk of between‐field spread, based on the estimated probability that inoculum will survive the transportation process. Using potato late blight as a case study, the effect of solar radiation on the viability of detached Phytophthora infestans sporangia was assessed. A model to estimate the probability of spore survival was derived using a binomial generalized linear mixed model (GLMM), and receiver operating characteristic (ROC) curve analysis and cross‐validation were used to evaluate the global performance of the model as a binary classifier for discriminating between viable and nonviable sporangia. The model yielded an area under the ROC curve of 0.92 (95% CI = 0.90–0.93), signifying an excellent classification algorithm. Inspection of the curve provided a number of suitable decision threshold (or cut‐off) probabilities for discriminating between viable and nonviable sporangia. The classifier was tested as a forecasting system for potato late blight outbreaks using 10 years of outbreak data from across Great Britain. There was a marked differentiation among the cut‐offs, but the best prediction outcome was an accuracy of 89% with an alert frequency of 1 in 7 days. This model can be easily modified or the methodology replicated for other pathosystems characterized by airborne inoculum.  相似文献   

12.
The sowing area of winter oilseed rape in Latvia has been rapidly increasing during the last 10 years, therefore oilseed rape diseases have become an important risk factor. The present paper reports 4‐year data (2008–2011) on different fungicide application systems (including forecasting systems) tested in field trials in Central Latvia. The development of stem canker (Leptosphaeria spp.) and white stem rot (Sclerotinia sclerotiorum) was evaluated depending on fungicide application schemes. Stem canker was found to be a widespread disease, and coexistence of both L. maculans and L. biglobosa was established in Latvia. There was no epidemic of white stem rot observed during the investigation period (incidence of disease was only 0.7–4.5%). Application of fungicides significantly (P < 0.05) decreased severity of stem canker. However, substantial differences between different treatments were not detected. Yield of oilseed rape fluctuated at about 4.5 tonnes ha?1, and use of fungicides did not increase the yield. It was found that DaCom Plant Plus program had overestimated the risk of white stem rot in years with low disease pressure, whereas the Swedish model of forecasting, based on the risk‐point system, had produced acceptable forecasts.  相似文献   

13.
Resistance of barley to Fusarium graminearum was studied using a pair each of resistant and susceptible black and yellow barley lines. The spikelets were inoculated with a trichothecene‐producing isolate, a trichothecene‐nonproducing isolate (tri5?), or a mock solution. Spikelets were collected 72 h after inoculation and metabolites were analysed using a LC‐hybrid MS system. Metabolite abundances were used to identify the constitutive (RRC) and induced resistance‐related metabolites (RRI). The pathogen virulence factor, DON, and its plant detoxification product, DON‐3‐O‐glucoside (D3G), were also identified and designated as resistance‐indicator (RI) metabolites. The RRC, RRI and RI metabolites were putatively identified. Jasmonic acid was significantly induced in barley following inoculation with a trichothecene‐producing isolate, but not with a tri5? isolate. The former isolate reduced the induction of both the number and amount of RR metabolites. The metabolites cinnamic acid, sinapoyl alcohol, coniferin, catechin and naringin were identified only in response to the inoculation with a tri5? mutant. The abundances of p‐coumaric acid, coniferaldehyde and sinapaldehyde increased more in response to the tri5? mutant than to the trichothecene‐producing isolate. The total amount of DON synthesized and its conversion to D3G varied greatly between the resistant and susceptible black barley, but not in yellow barley. Interestingly, an increase in the amount of total DON produced was associated with a decrease in the conversion of DON to D3G. The roles of RRC, RRI and RI metabolites in plant defence and their further use as potential biomarkers in screening are discussed.  相似文献   

14.
The forecasting and warning system of Emilia‐Romagna region (Italy) produces warnings for crop protection against diseases, using information from weather stations, biological surveys on a network of observation fields and simulation models. The network of field observations is crucial for the efficiency of the service but, unfortunately, the human and economic resources available for their management are usually less than needed. Therefore, the number of observation fields is insufficient to cover the entire territory uniformly, so that their geographical distribution increases in importance. In this work, a method for rational arrangement of observation fields on a regional scale is proposed. It uses models simulating crop growth and disease outbreak, both using meteorological data available on a 5‐km mesh, to draw maps showing homogeneous areas within the territory. For the main pathogens of winter wheat (Erysiphe graminis, Puccinia striiformis, Puccinia recondita and Fusarium subsp.), disease risk is calculated when host plants are susceptible to infection, and both static and dynamic maps are drawn. The use of maps is discussed in arranging observation fields and in timing field surveys.  相似文献   

15.
Gibberella zeae is a pathogen of wheat and other small-grain cereals, causing yield losses and reducing grain quality by producing the trichothecene deoxynivalenol (DON) which is harmful to animals and humans. One hundred and fifty three progeny from a cross between two European DON-producing isolates of G. zeaewere analyzed for aggressiveness and DON production in three environments (location–year combinations) in Germany. Aggressiveness, measured as head blight rating and relative plot yield, and DON production showed continuous distribution for each environment and across environments. There was significant (P=0.01) genotypic variation for all three traits. Transgressive segregants occurred for all three traits. Both repeatability estimates within an environment and heritability estimates on an entry-mean basis for head blight rating and DON production were medium to high (0.5–0.7). Progeny–environment interaction accounted for about 29% of the total variance for the two aggressiveness traits and 19% for DON production. The large genetic variation derived from a cross between two rather similar European parents indicates a potential for increasing fungal aggressiveness in theG. zeae population.  相似文献   

16.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

17.
The main agricultural crops where decision support systems (DSS) can be used via the Internet in Latvia are winter and spring cereals and potato. Two PC‐based models, forming part of a Danish DSS, were tested under the agroecological conditions of Latvia in 1999/2002: PC‐Plant Protection to control diseases in cereals and several modifications of the NegFry model for prediction of potato late blight. The results of 4 years of trials suggest that models that satisfy the needs of one pest may not fit another. The main reasons for failure to adapt PC models are differences in cultivar susceptibility, differences in pathogenicity, simultaneous action of other organisms and spatial placement of crops (forests, rivers and fallow land). For example, it is well known that, with the recent global migration of more aggressive strains and populations of Phytophthora infestans, late blight epidemics have become less predictable and, at the same time, less controllable in potato‐growing areas. For cereals, there is a different spectrum of prevailing pathogens, causing different levels of damage, requiring incorporation into models of thresholds corresponding to local conditions. Data from weekly monitoring of local fields, warnings about the local situation and meteorological information via the Internet are the most important computer‐aided elements for experts in plant protection.  相似文献   

18.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

19.
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)‐like symptoms during the 2010–11 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F. pseudograminearum were diagnosed from 42 of the 44 sites using species‐specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg?1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg?1 DON. DON concentration in straw also exceeded 1 mg kg?1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F. graminearum and/or F. pseudograminearum and weather‐related factors influenced DON levels in immature grains. The average monthly rainfall for August–November during crop anthesis and maturation exceeded the long‐term monthly average by 10–150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.  相似文献   

20.
Climatic data with a high temporal and spatial resolution are invaluable when modelling the potential distribution of non‐native pests. The European Commission Joint Research Centre Monitoring Agricultural ResourceS (MARS) programme provides a unique source of European daily climatic data. Available from 1975 to 2015 and updated annually, the data are interpolated from over 5000 weather stations to 25‐km grid cells. All geographical Europe is included, plus Mediterranean areas of the Middle East and North Africa. The climatic parameters available include temperature (daily minima and maxima), solar radiation, rainfall and relative humidity. As well as the potential for use in simple pest models, selected parameters can be imported into more complex models, such as CLIMEX, for more detailed analyses. Case studies showing how the MARS data have been used by the UK in pest risk analyses are presented for three insect pests: Thaumetopoea pityocampa, Hyphantria cunea (both Lepidoptera) and Popillia japonica (Coleoptera). The case studies illustrate some methods of representing uncertainty where thresholds are lacking in the published literature, there are conflicting data and only air temperature data are available to model a soil‐dwelling organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号