首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
A series of experiments was conducted in the laboratory and greenhouse of the Subtropical Field Science Center, University of the Ryukyus, Japan, from April to October 2015 to assess the allelopathic potential of 50 indigenous Bangladeshi rice varieties by using the donor–receiver bioassay, equal compartment agar method (ECAM), plant residue extract method and pot culture method. Lettuce (Lactuca sativa L.), cress (Lepidium sativum L.), radish (Raphanus sativus L.), barnyard grass (Echinochloa crus‐galli L. Beauv.) and jungle rice (Echinochloa colona L.) were used as the test plants. The highest inhibition effect was given by Boterswar, while the stimulating effect was given by Kartikbalam and Panbira in the donor–receiver bioassay and ECAM tests. Boterswar, Goria, Biron and Kartiksail were selected as the highest allelopathic‐potential varieties by the donor–receiver bioassay and ECAM. In the methanol extract test, Boterswar gave the strongest inhibitory effect on both barnyard grass and jungle rice, while Kartiksail gave the highest inhibitory effect on the jungle rice shoot. The growth parameters and total dry matter of barnyard grass in the greenhouse pot experiment were significantly reduced as a result of the application of aqueous extracts of the selected rice varieties, which was similar to the results of the laboratory experiments. The varieties of Boterswar, Goria, Biron and Kartiksail were selected as the most allelopathic among the 50 indigenous Bangladeshi rice varieties. These rice varieties could be used for the isolation and identification of allelochemicals and to further develop new varieties that are tolerant to weeds.  相似文献   

2.
Echinochloa oryzicola Vasing. (= Echinochloa phyllopogon Stapf ex Kessenko) is an obligate weed with an elaborated survival strategy in the flooded rice of Japan. In this review various adaptive characters of the weed, which comprise the survival strategy, are discussed through the life cycle. The weed is distributed only in flooded rice. Seeds (spikelets) buried in the soil exhibit annual cycles between dormant and non‐dormant state, and non‐dormant seeds recurrently appear in spring when rice growers start to prepare seedling beds and fields for rice transplanting. The non‐dormant seeds have unique characters metabolically adapted to submerged conditions to germinate and grow by the anaerobic respiration through alcohol fermentation. The weed has seemingly perfect mimicry of the rice plants throughout its development from seedling to heading, by which the weed escapes from manual weeding. In a rice paddy, the weed starts heading coincidentally with the rice plants at the period when the growers are reluctant to walk in the rice paddy to weed. Irrespective of plant height of the rice cultivar, the weed develops a few upper leaves above the rice canopy during the heading period of rice. This phenotypic plasticity of E. oryzicola in plant height is one of the characters conferring its competitive aggressiveness in flooded rice. When weeding is begun again after heading, the dormant weed seeds escape weeding by shattering and join the soil seedbank. The dormant seeds express the gene of an enzyme catalyzing ATP synthesis through the mitochondrial oxidative phosphorylation more abundantly, and have larger oxygen absorption and enzyme activity of the aerobic respiration than the non‐dormant seeds, suggesting that the dormant seeds maintain viability by the conventional aerobic respiration in the paddy soil drained from rice harvesting in fall to the next early spring. The various adaptive characters comprising the survival strategy of E. oryzicola in flooded rice consist of those inherited from the wild progenitor and those selected by the crop cultivation pressure. It is suggested that both the mimicry of the weed and the heading coincident with the rice plants have been acquired by the large selection pressure of frequent weeding, which has been done over the past hundred years. However, today, the manual weeding is substituted with herbicides, which cannot detect the mimicry and heading photoperiodic sensitivity. As a result, the dominant species of Echinochloa weeds in flooded rice is changing from E. oryzicola to Echinochloa crus‐galli var. crus‐galli that has neither mimicry nor photoperiodic sensitivity synchronizing to that of rice, but is more competitive against rice.  相似文献   

3.
Evaluation of rice allelopathy in hydroponics   总被引:3,自引:0,他引:3  
The inhibitory activity of water extracts from the shoots and roots of three rice cultivars, Taichung native 1 (TN1) and IAC165 (both allelopathic rice) and AUS196 (non-allelopathic rice), grown in hydroponics was evaluated. The release of germination inhibitors by allelopathic rice plants into hydroponic solution was also determined with freshly collected solution and XAD-4 resin desorbate. The degree of the inhibition was quantified in terms of root growth in Echinochloa colona, Echinochloa crus-galli, Echinochloa crus-galli var. oryzicola, Triantema portulacastrum and Lactuca sativa. The allelopathic activity of rice was species specific, and depended on source and concentration. Root length of all test species was inhibited by the different concentrations of shoot extract of allelopathic and non-allelopathic rice. However, of the three cultivars, TN1 showed higher inhibition than IAC165 and AUS196 in all test species. Water extracts of shoots and roots significantly inhibited root growth in E. crus-galli but the shoot extract gave a greater inhibitory effect on E. crus-galli than the root extract. Root exudate of TN1 inhibited root elongation of E. crus-galli from 2 weeks after transplanting (WAT) and the inhibition continued for 4 WAT. The results confirmed the previous finding of a laboratory bioassay that the TN1 had allelopathic activity and produced allelochemicals that inhibit growth of some weed species.  相似文献   

4.
Cover crops can suppress weeds within agricultural fields due to competitive and allelopathic effects. Glasshouse experiments were conducted to evaluate the relative proportions of allelopathic effects to the total weed inhibition. Six different cover crop species were combined with three weed species in the presence or absence of active carbon over a period of four weeks. Active carbon was used as an adsorbent for allelopathic substances in the soil. Our study revealed that the competition between cover crops and weeds shifted, possibly due to the minimisation of allelopathic effects by active carbon in the soil. We assume that the degree of cover crops allelopathic effects on weeds is species‐specific, both on the side of cover crops and on the weed side. The cover crops Raphanus sativus, Fagopyrum esculentum and Avena strigosa showed the highest allelopathic weed suppression with up to 28%. Additionally, Stellaria media turned out to be the most sensitive weed against allelopathic effects induced by all cover crops, except for Linum usitatissimum and Guizotia abyssinica. The knowledge about the contribution of competitive and allelopathic effects by cover crops would help to create cover crop mixtures with high weed suppressive ability.  相似文献   

5.
There is a general perception among Cambodian rice (Oryza sativa) farmers that, after harvesting, rice crop residues that are incorporated into the field benefit the growth of the subsequent rice crop. However, the effect of this action upon weed establishment and growth has not yet been considered. A series of pot and field trials were conducted to determine whether such action could inhibit weed establishment and/or growth. The pot studies first evaluated the response of the test plant (rice line ST‐3) and three weed species, barnyardgrass (Echinochloa crus‐galli), small umbrella sedge (Cyperus difformis), and water primrose (Ludwigia octovalves), to the residue of 16 rice lines and the field trials were later conducted to evaluate the response of the same test plants to the residue of seven putatively allelopathic rice lines and one non‐allelopathic rice line. The residue of all the studied rice lines, depending on how long they had been incorporated into the soil, reduced the establishment and growth of all three weed species, as well as the rice crop. However, if the residue's incorporation was delayed by 2 weeks or only a proportion of the residue was incorporated, the rice crop could withstand the growth‐inhibiting effect, while the inhibition of the establishment and growth of the three weed species was retained. These responses of rice and the weeds to rice crop residues might provide a basis for a weed management strategy, particularly in the resource‐poor rice‐production systems of Cambodia.  相似文献   

6.
Laboratory experiments were conducted to analyze the iron (Fe) tolerance of paddy weeds and rice varieties (Oryza sativa) for germination and root elongation. Under a waterlogged soil condition, the Fe(II) content in a soil solution increased with an increase in the ratio of rice straw to the soil. In the presence of 0.9% (w/w) straw to soil, which corresponds approximately to 8 t of straw applied to an area of 1 ha × 10 cm depth in the field, ~80 mg L?1 of Fe(II) was produced in the soil solution. Based on this result, the seeds of rice and the weeds were incubated in a solution with <100 mg L?1 of Fe(II). The presence of 100 mg L?1 of Fe(II) suppressed the germination of Echinochloa crus‐galli var. crus‐galli, Cyperus serotinus, Cyperus difformis, and Monochoria korsakowii. However, it had no effect on the germination of Echinochloa oryzicola, Schoenoplectus juncoides (= Scirpus juncoides var. ohwianus), and Monochoria vaginalis. This level of Fe tolerance was the same as that of rice. These findings suggest that E. oryzicola, S. juncoides, and M. vaginalis can grow under more severe conditions than E. crus‐galli, C. serotinus, C. difformis, and M. korsakowii. In relation to seminal root elongation, the order of tolerance of Fe toxicity was O. sativa cv. Dunghan Shali > O. sativa cv. Hoshinoyume > E. oryzicola > M. vaginalis > S. juncoides. Thus, the results show that the tolerance of rice is greater than that of E. oryzicola, which had a comparatively strong tolerance among the weeds examined, and also that there are differences in tolerance among the rice varieties. These findings suggest that the difference in Fe tolerance is involved in weed control systems when organic materials are applied. If this difference is an important factor in the weed control system, Fe‐tolerant rice varieties, like cv. D. Shali, could facilitate weed control systems due to their higher Fe tolerance ability.  相似文献   

7.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions.  相似文献   

8.
BACKGROUND: One promising area of paddy weed control is the potential for exploiting the weed‐suppressing ability of rice. This study was conducted to develop commercially acceptable allelopathic rice cultivars using crosses between allelopathic rice variety PI312777 and commercial Chinese cultivars (N2S, N9S, Huahui354, Peiai64S and Tehuazhan35), and to assess their weed suppression and grain yield in paddy fields in relation to their parents. RESULTS: There was a positive dominance in the crosses Huahui354 × PI312777 and N2S × PI312777 but recessive or negative dominance in N9S × PI312777, Peiai64S × PI312777 and Tehuazhan35 × PI312777. Huahui354 × PI312777 and N2S × PI312777 showed stronger weed suppression than their parents and other crosses. Finally, an F8 line with an appearance close to Huahui354 and a magnitude of weed suppression close to PI312777 was obtained from Huahui354 × PI312777. This line, named Huagan‐3, was released as a first commercially acceptable allelopathic rice cultivar in China. The grain yield and quality of Huagan‐3 met the commercial standard of the local rice industry. Huagan‐3 greatly suppressed paddy weeds, although suppression was influenced by year‐to‐year variation and plant density. There was no certain yield reduction in Huagan‐3 even under a slight infestation of barnyard grass in paddy fields. CONCLUSION: The successful breeding of Huagan‐3 with high yield and strong weed suppression may be incorporated into present rice production systems to minimise the amount of herbicide used. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Lignin biosynthesis is essential for plant growth. 4‐Coumarate CoA ligase (4‐CL, EC6.2.1.12) is involved in the monolignol synthesis and occupies a key role in regulating carbon flow into the phenylpropanoid metabolism pathway. Naringenin, one of the metabolites in this pathway, is known as a potent in vitro inhibitor of 4‐CL. The growth of rice (Oryza sativa L. cv. Koshihikari), maize (Zea mays L. cv. Yellow corn) and Echinochloa oryzicola Vasing seedlings at the 2nd leaf stage was inhibited after continuous root application with 0.1 mmol L?1 naringenin for 1 week, although naringenin did not kill these gramineous plants. The highest inhibition of fresh weight increase was observed in maize, followed by rice and E. oryzicola. The symptoms in these plants were root browning, delay of leaf/root development and shoot dwarfing. Naringenin treatment increased the contents of 4‐CL substrates, cinnamic acid, 4‐coumaric acid, caffeic acid and ferulic acid from 1.2 to 7.2 times and from 1.2 to 3.5 times in shoots and roots, respectively, except for ferulic acid in E. oryzicola roots. It also caused a slight decrease of the lignin content and alteration of lignin constitutions in rice plants. These results suggested that the monolignol pathways after 4‐CL towards lignin has the possibility to be the novel action sites of plant growth retardants, although further investigations are needed to clarify the mode of action.  相似文献   

10.
A series of field experiments was conducted during 1999 and 2000 to study the effect of six Cambodian rice lines that had been selected for their allelopathic potential on the growth of three weed species (barnyardgrass, small umbrella sedge, and water primrose). The results from 2 years' study demonstrate that powerful weed‐establishment and growth‐suppressive mechanisms were present in all of the rice lines tested. This mechanism was equally active on all three weed species studied. Across all the rice lines and across all the weed species, weed establishment was reduced by 71%, the final plant height was reduced by 49%, and the dry biomass was reduced by 80%. A tentative comparison between the effects of the Cambodian rice lines and those of previously characterized allelopathic and non‐allelopathic rice lines revealed that approximately three‐quarters of the weed growth suppression in the Cambodian lines could be attributed to resource competition and one‐quarter could be attributed to allelopathy, although this analysis did not take into account morphological differences between the two types of rice. Such weed growth‐suppressing activity could be particularly useful in subsistence farming systems where the use of selective herbicides is prohibitive or when organic rice production is the objective. The use of rice lines that suppress the growth of weeds is likely to be a potent supplement to present weed management practises and will reduce production costs and the potential for environmental pollution, as well as alleviate some of the social constraints that are associated with labor‐intensive manual weeding.  相似文献   

11.
Echinochloa crus‐galli (L.) Beauv. var. formosensis Ohwi (2n = 6x = 54, AABBCC genomes) and Echinochloa oryzicola (Vasinger) Vasinger (2n = 4x = 36, AABB) are major paddy weeds in East and Southeast Asia. E. oryzicola has been generally considered to be a paternal genome donor of E. crus‐galli s. l., which includes E. crus‐galli var. formosensis based on cpDNA sequences. Thus, molecular characterization using polymerase chain reaction‐restriction fragment length polymorphism analysis of cpDNA has been proposed as a reliable method for discriminating between the two species. In this study, we report that four accessions of E. crus‐galli var. formosensis from Okinawa, Nagasaki, Shizuoka and Tokyo had similar cpDNA sequences to E. oryzicola and had been misidentified as E. oryzicola using molecular methods. In addition, our results demonstrated that these accessions likely inherited their chloroplast genomes from E. oryzicola and not from an anonymous diploid species during polyploidization. Our findings provide new insights into the evolution of E. crus‐galli s. l. and suggest that identification using the cpDNA molecular method alone is not an appropriate approach to differentiate E. crus‐galli var. formosensis and E. oryzicola.  相似文献   

12.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

13.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

14.
The occurrence of herbicide‐resistant weeds has boosted interest in the use of crop allelopathy as a potential alternative to herbicides for weed control in rice (Oryza sativa). The phytotoxic compounds that are released by rice could help to enhance its competitive ability and improve weed management. This study aimed to screen rice genotypes for phytotoxic activity, quantify the amount of momilactone B in various rice tissues, and identify the potential parental lines for quantitative trait locus analysis. Therefore, a total of 41 cultivars from germplasm collections was evaluated for their effects. Significant differences were found among the rice cultivars in their ability to reduce the germination, root growth, and root dry weight accumulation of Alisma plantago‐aquatica. The leaf extract was the most inhibitory to germination. Out of the five cultivars that were tested, momilactone B was detected in four of them: Marateli, Kizilirmak, Karadeniz, and Kiziltan. Karadeniz and Kiziltan were identified as the rice cultivars with a high momilactone B content in the tissues and therefore they could be used in breeding programs to enhance the phytotoxic potential of rice. The development of a rice cultivar with proven allelopathic characteristics could provide an environmentally friendly and low‐cost approach for the control of A. plantago‐aquatica.  相似文献   

15.
JOHNSON  DINGKUHN  JONES  MAHAMANE 《Weed Research》1998,38(3):207-216
Detailed studies were conducted on three rice cultivars – IG10, an Oryza glaberrima Steudel; Moroberekan, a traditional Oryza sativa L.; and IDSA6, an improved O. sativa L. – in conditions with and without competition from weeds. IG10 suffered less from competition with weeds and suppressed weeds better than the O. sativa cultivars. IG10 accumulated more biomass, produced more tillers, established a higher leaf area index, had higher specific leaf area and, in the earlier stages of growth, partitioned more of its biomass to leaves than the O. sativa cultivars. Without competition from weeds, grain yields did not significantly differ between the cultivars, but IG10 produced higher yields in competition with weeds. The implications of these findings are discussed in relation to the development of rice plants with good weed suppression characteristics.  相似文献   

16.
Echinochloa species are amongst the most problematic weeds in rice fields of Korea. The steady reliance on the Acetyl‐CoA carboxylase (ACCase) and acetolactate synthase inhibiting herbicides for control of these weeds has led to resistance to these herbicides. The objective of this study was to assess the genetic diversity among populations of ACCase inhibitor‐resistant and ‐susceptible Echinochloa crus‐galli and E. oryzicola in Korea, to better understand their population structure and possible origins of resistance. Seven simple sequence repeat markers were applied to assess the genetic diversity between resistant and susceptible E. crus‐galli and E. oryzicola from 12 populations in Korea. Genetic diversity was slightly higher in the resistant group. The Unweighted Pair Group Method using Arithmetic algorithm (UPGMA) dendrogram generated two distinct clades. One clade consisted of Echinochloa spp. from three populations, i.e. Anmyeondo, Gimje 4 and Gongju, which are resistant and differentiated from the susceptible populations, and the other clade contained the rest of the populations. Structure modelling supported two clades of UPGMA clustering. Based on these data, we can infer that some resistant populations are greatly differentiated, whereas other resistant biotypes are still building up resistance in rice fields in Korea. Resistance traits will be fixed and continue to spread over time without proper control measures.  相似文献   

17.
A new simple empirical model for early prediction of crop losses by weed competition was introduced. This model relates yield loss to relative leaf area of the weeds shortly after crop emergence using the relative damage coefficient q as the single model parameter. The model is derived from the hyperbolic yield density relationship and therefore accounts for the effects of weed density. It is shown that the model also accounts for the effect of different relative times of weed emergence. A strong advantage of the approach is that it can be used when weeds emerge in separate flushes. The regression model described experimental data on sugar-beet – lambsquarters (Beta vulgaris L. –Chenopodium album L.) and maize-barnyard grass (Zea mays L. –Echinochloa crus-galli L.) competition precisely. The model describes a single relationship between crop yield loss and relative leaf area of the weeds over a wide range of weed densities and relative times of weed emergence. Possibilities for scientific and practical application of the model are discussed.  相似文献   

18.
Precise hill‐direct‐seeded rice, which is both cost‐ and labor‐saving, is based on the direct seeding of rice by using a precision rice hill‐drop drilling machine. Weedy rice (Oryza sativa f. spontanea), also known as “red rice”, is a major weed in precise hill‐direct‐seeded rice, causing an ≤80% yield loss and a reduction in grain quality. The aim of this study was to evaluate the control efficiency of weedy rice by pretilachlor (a pre‐emergence herbicide) and fenclorim (a safener) and their safety for precise hill‐direct‐seeded rice in two consecutive years. The amount of rice seed germination was accelerated by soaking the seeds in the safener at 0.67 g ai L?1 for 1 h before sowing. The pre‐emergence pretilachlor treatments were applied 2 days after sowing cultured rice. The inhibition of the shoot fresh weight of the cultured rice was reduced by 3.3, 6.4 and 7.4% with 450, 900 and 1350 g ai ha?1 of pretilachlor at 32 days after sowing (DAS) and that of the root fresh weight was reduced by 2.6, 4.9 and 8.1%, respectively. With fenclorim and pretilachlor in a precise hill‐direct‐seeded rice field in 2010 and 2011, the weedy rice control efficiency at 32 DAS was reduced by 100 and 98.0%, respectively. The pre‐emergence pretilachlor treatments that were applied at 2 DAS were much more efficient in the weedy rice control and less inhibitory to the cultured rice growth. The rice yield was increased by 26.1–26.7% in the mechanical precise hill‐direct‐seeded rice, relative to the manual‐seeding rice, with the application of fenclorim and pretilachlor.  相似文献   

19.
Passion fruit (Passiflora edulis) is grown in the tropics for its edible fruits and for its many ethno‐pharmacologic and pharmacological properties. Our study revealed that the plant contains a strong allelopathic potential. In a bioassay, aqueous extracts of P. edulis strongly suppressed germination and growth of lettuce, radish and two major paddy rice weeds, Echinochloa crusgalli and Monochoria vaginalis. In glasshouse and field experiments, P. edulis also strongly inhibited the growth of paddy rice weeds. Application of 2 t ha?1 dry plant material of P. edulis reduced weed biomass by 70% and increased rice yield by 35% compared with the unweeded control. Ten newly identified substances in P. edulis extracts, including coumarin, long‐chain fatty acids and lactones, may be responsible for the inhibitory activity of P. edulis. Coumarin and the lactones showed greater inhibition of germination and growth of E. crusgalli than the fatty acids. The authors suggest that P. edulis may be used as a natural herbicide to reduce the dependency on synthetic herbicides.  相似文献   

20.
This study was conducted to evaluate the cross‐resistance of acetolactate synthase (ALS) inhibitors with different chemistries, specifically azimsulfuron (sulfonylurea), penoxsulam (triazolopyrimidine sulfonanilide) and bispyribac‐sodium (pyrimidinyl thio benzoate), in Echinochloa oryzicola and Echinochloa crus‐galli that had been collected in South Korea and to investigate their herbicide resistance mechanism. Both Echinochloa spp. showed cross‐resistance to the ALS inhibitors belonging to the above three different chemistries. In a whole plant assay with herbicides alone, the resistant/susceptible ratios for azimsulfuron, penoxsulam and bispyribac‐sodium were 12.6, 28.1 and 1.9 in E. oryzicola and 21.1, 13.7 and 1.8 in E. crus‐galli, respectively. An in vitro ALS enzyme assay with herbicides showed that the I 50‐values of the resistant accessions were approximately two‐to‐three times higher than the susceptible accessions, with no statistical difference, suggesting that the difference in ALS sensitivity cannot explain ALS inhibitor resistance in Echinochloa spp. for azimsulfuron, penoxsulam and bispyribac‐sodium. A whole plant assay with fenitrothion showed that the GR 50‐values significantly decreased in both the resistant E. oryzicola and E. crus‐galli accessions when azimsulfuron, penoxsulam and bispyribac‐sodium were applied with the P450 inhibitor, while no significant decrease was observed in the susceptible accessions when the P450 inhibitor was used. Thus, these results suggest that ALS inhibitor cross‐resistance for azimsulfuron, penoxsulam and bispyribac‐sodium is related to enhanced herbicide metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号