首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlling Verticillium dahliae through irrigation systems should be an important measure within integrated management of verticillium wilt of olive in Spain. Pathogen content of water infested by V. dahliae conidia and sclerotia can be diminished following in vitro treatments with the disinfectants OX-VIRIN and OX-AGUA AL25. Three concentrations per disinfectant were assessed for their effectiveness under operational conditions of modern irrigated olive orchards. Sterilized potted soil was drip-irrigated with conidia- or sclerotia-containing water that was pumped from a storage tank and disinfected (or not, control) within the pipelines via metering pumps. The trial was carried out in autumn and spring for each type of propagule infesting the water. The inoculum dispensed through drippers and the total inoculum density accumulated in soil were estimated. Furthermore, the treated residual inoculum in soil was assessed for pathogenicity on olive plants. Conidial incorporation in soil was prevented by most disinfectant treatments in spring; while for sclerotia, prevention was observed only at the highest OX-VIRIN (51.2 mL L−1; in both seasons) and OX-AGUA AL25 (11.27 mL L−1; in autumn) concentration. The remaining disinfectant treatments reduced conidia and sclerotia accumulation in soil by over 99% and 95%, respectively. Season particularly impacted the efficacy of lower concentrations. Expression of symptoms was not observed in olive plants grown in previously treated soils. The infectivity of the residual inoculum present in some treated soils was prevented, markedly reduced or limited to the roots. These results provide a novel, interesting and feasible approach in the management of the disease.  相似文献   

2.
For efficient integrated management of verticillium wilt in olive (VWO), it is important to establish whether irrigation treatments (with Verticillium dahliae‐free water) that mitigate the disease in V. dahliae‐infested soil, also reduce the levels of more and less persistent propagules of the pathogen in the soil. Effects of irrigation on VWO and V. dahliae propagules were evaluated under natural environmental conditions. Potted plants were irrigated (pathogen‐free water) to two ranges of soil water content (RWC; high and low) at three surface drip‐irrigation frequencies (daily, weekly, and daily during some periods and otherwise weekly). VWO and total inoculum density (ID), density of less persistent micropropagules (MpD) and more persistent sclerotia in wet soil (SwD), and sclerotia density for air‐dried soil (SdD) were monitored. A logistic model (multiple sigmoid) of disease incidence revealed the lowest parameter values in treatments irrigated daily. Daily frequency of irrigation showed significantly lower disease incidence (39.2%) and disease intensity index (43.9%) and MpD (88.0%) values as areas compared with other frequencies, regardless of the RWC. High RWC significantly reduced (70.8–84.9%) ID, SwD and SdD as areas, but significantly increased (18.0%) the incidence of infected plants (IIP), regardless of the irrigation frequency. The disease incidence was not correlated with temperature. Daily irrigation to low RWC mitigated the VWO and the IIP, kept soil to the lowest MpD and resulted in the lowest SdD level at the end of the trial. Results suggested that less persistent propagules could have played a part in the disease development.  相似文献   

3.
Alternatives to soil fumigation are needed for soilborne disease control. The aim of this study was to test anaerobic soil disinfestation (ASD) as an alternative to soil fumigation for control of critical soilborne pathogens in Californian strawberry production. Controlled environment experiments were conducted at 25 and 15 °C to test different materials as carbon sources for ASD using soil inoculated with Verticillium dahliae. Field trials were conducted in three locations comparing ASD with 20 Mg ha?1 rice bran (RB) against fumigated and untreated controls, steam, mustard seed meal and fish emulsion. In ASD‐treated soils, temperature and extent of anaerobic conditions were critical for control of V. dahliae, but multiple carbon inputs reduced inoculum by 80–100%. In field trials, ASD with RB provided control of a number of pathogens, and in three of four trials produced marketable fruit yields equivalent to fumigation. Little weed control benefit from ASD was found. ASD with RB also induced changes in the soil microbiome that persisted through the growing season. When equivalent yields were obtained, net returns above harvest and treatment costs with ASD RB were 92–96% of those with bed fumigation based on average prices over the previous 5 years. ASD can be a viable alternative for control of some soilborne pathogens. Growers are adopting ASD in California strawberry production, but research to determine optimal soil temperatures, anaerobicity thresholds and carbon sources for effective control of specific pathogens is needed.  相似文献   

4.
Talaromyces flavus, a fungal antagonist of Verticillium dahliae, naturally occurring in clay loam artichoke fields or sandy loam olive groves, is able to survive following application of soil solarization. Survival was almost always linked to an increase in T. flavus populations detected in the rhizosphere of artichoke plants or olive trees with a verticillium wilt history as compared with the untreated control soils. It was evident that soil solarization resulted in the control of the disease in artichoke fields and the recovery of olive trees from V. dahliae infection. It was furthermore proved that solarization had a beneficial long-term effect in controlling V. dahliae for a period of 2 or 3 consecutive years. This could at least partially be attributed to the activity of T. flavus in inhibiting the germination of microsclerotia or causing their death. Aspergillus terreus, another potential V. dahliae antagonist, was also found to survive and occasionally increase following the application of the technique.  相似文献   

5.
E. C. TJAMOS 《EPPO Bulletin》1993,23(3):505-512
Control of verticillium wilt of olive currently depends on preventive measures. Since systemic fungicides are unable to prevent or control the disease, its control should primarily be based on cultural methods, including irrigation systems which restrict dissemination of Verticillium dahliae propagules by irrigation water and avoidance of intercropping with hosts susceptible to V. dahliae. Since leaves from affected olive trees contribute, through formation of microsclerotia, to the inoculum in the soil, pruning should be practised prior to branch defoliation. As for resistant olive rootstocks or cultivars, promising verticillium-wilt resistance has been found in two rootstocks selected in California (US). However, these have to be tested under local conditions before they can be released to Mediterranean growers, while further search for other resistant rootstocks is needed. Soil solarization applied to individual diseased trees in established olive groves could substantially contribute to recovery or long-lasting symptom remission in the treated trees. This effect is mainly attributed to the decrease or eradication of V. dahliae microsclerotia in the treated soil but also to heat-tolerant fungal antagonists of the pathogen. Using herbicides to control weeds, and limiting soil rotovation, can restrict symptom development. Biological control can also be considered as a promising trend in controlling the disease by searching, testing and exploiting potential fungal or bacterial antagonists.  相似文献   

6.
Biological control of plant diseases using soil amendments such as animal manure and composted materials can minimize organic waste and has been proposed as an effective strategy in crop protection. In this study, 35 organic amendments (OAs) and 16 compost mixtures were evaluated against Verticillium dahliae by assessing both the antagonistic effect on the mycelial growth of two representative isolates of V. dahliae and the effect on the reduction of microsclerotia viability of the pathogen in naturally infested soil. Eleven OAs and five compost mixtures showed a consistent inhibition effect in in vitro sensitivity tests, with solid olive‐oil waste compost one of the most effective. Therefore, a bioassay with olive plants was conducted to evaluate the suppressive effect against V. dahliae of these selected OAs and compost mixtures. Significant reduction in the severity of the symptoms of V. dahliae indicates the potential use of grape marc compost (100% disease severity reduction) and solid olive‐oil waste, combined with other OAs. Microorganism mixtures and dairy waste OAs had a potential suppressive effect when they were combined with compost, showing a 73% and 63% disease severity reduction, respectively. A mixture of agro‐industrial waste with other biological control agents is a promising strategy against verticillium wilt of olive. To the authors' knowledge, this is the first report on the effectiveness of compost extracts (compost teas) on the inhibition of natural microsclerotia of V. dahliae, and also on verticillium wilt suppression in olive with solid olive‐oil waste.  相似文献   

7.
Tong HENG 《干旱区科学》2018,10(6):932-945
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0-200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.  相似文献   

8.
Better soil disinfestation methods, such as biological soil disinfestation (BSD), that are environmentally safe are increasingly been developed and used because of rising concerns related to environmental risks. We evaluated the efficacy of soil disinfestation using ethanol to control the fungus Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt of tomato. Survival of bud cells and chlamydospores declined markedly in soil saturated with diluted ethanol solution in the laboratory. In field trials, artificially added nonpathogenic Fusarium oxysporum and indigenous F. oxysporum were both strongly suppressed in soil saturated with 1% ethanol solution; a wheat bran treatment was not as effective. The artificially added fungus was not detected in three of four sites treated with ethanol but was detected in three of four sites amended with wheat bran. Using ethanol in pre-autoclaved soil was not suppressive; thus native microorganisms are essential for the suppression. This ethanol-mediated biological soil disinfestation (Et-BSD) temporarily increased the number of anaerobic bacteria, but the number of fungi and aerobic bacteria was stable. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) analysis revealed slight but apparent differences in bacterial community structures in the soil treated with Et-BSD compared with the structure in soils after other treatments such as water irrigation and in the control soil, which received neither organic amendment nor irrigation after 15 days. Et-BSD is a potentially effective and easy soil disinfestation method, and its impact on native, beneficial microorganisms is moderate.  相似文献   

9.
Survival, germination, olive colonization, and water-use efficiency (WUE) impairments by Verticillium dahliae could be influenced by cultivar susceptibility or irrigation, and this could modify the irrigation–pathogen–disease relationship. In this study, the combined effects of irrigation and cultivar susceptibility on Verticillium wilt (VW) development were modelled by the temporary assessment of V. dahliae propagules (total inoculum density, density of micropropagules, and sclerotia in wet and air-dried soil; ID, MpD, SwD, and SdD, respectively), root (RCI) and shoot (SCI) colonization indexes, and WUE. The relationship of disease severity to the measured parameters was then explored. Under controlled conditions, plants of cultivars ‘Picual’ and ‘Frantoio’ were irrigated to a high and low rate by varying drip-irrigation frequencies: daily, twice weekly, and a combination of daily for 11 days and then twice weekly. Disease severity and colonization parameters were higher in ‘Picual’, while WUE was higher in ‘Frantoio’. However, high rate and twice weekly and combination treatments significantly increased disease incidence and reduced time-to-symptoms-onset only in ‘Picual’, while high rate reduced WUE and increased relative ID, MpD, and SwD in both cultivars. Irrigation did not affect SCI, but a higher RCI was found at high rate during the development of symptoms in ‘Picual’. By using classification trees to examine parameters—disease severity relationships, it was possible to determine the degree to which VW was affected by irrigation and/or cultivar susceptibility. MpD was the best indicator for VW detection at any time, WUE was best before symptoms developed, and RCI, total ID, and SdD after symptoms developed.  相似文献   

10.
Jun ZHANG 《干旱区科学》2019,11(3):419-430
Drip irrigation can produce high rice yields with significant water savings; therefore, it is widely used in arid area water-scarce northern China. However, high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice, for example, reservoir water. The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage. The experiment set the soil temperatures at 18°C, 24°C and 30°C under two irrigation methods(flood and drip irrigation), respectively. The results showed that, at the 30°C soil temperature, drip irrigation increased total root length by 53% but reduced root water conductivity by 9% compared with flood irrigation. Drip irrigation also increased leaf abscisic acid and proline concentrations by 13% and 5%, respectively. These results indicated that drip irrigated rice was under mild water stress. In the 18°C soil temperature, drip irrigation reduced hydraulic conductivity by 58%, leaf water potential by 40% and leaf net photosynthesis by 25% compared with flood irrigation. The starch concentration in male gametes was also 30% less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18°C. Therefore, the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate. Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate, which is the main reason for the reduced yield of drip irrigated rice. Overall, the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment, causing declines both in the starch content of male gametes and in pollination rate. Low temperature will ultimately affect the rice yield under drip irrigation.  相似文献   

11.
Verticillium wilt of olive is best managed by resistant cultivars, but those currently available show incomplete resistance to the defoliating (D) Verticillium dahliae pathotype. Moreover, these cultivars do not satisfy consumers' demand for high yields and oil quality. Highly resistant rootstocks would be of paramount importance for production of agronomically adapted and commercially desirable olive cultivars in D V. dahliae‐infested soils. In this work, resistance to D V. dahliae in wild olive clones Ac‐13, Ac‐18, OutVert and StopVert was assessed by quantifying the fungal DNA along the stem using a highly sensitive real‐time quantitative polymerase chain reaction (qPCR) protocol and a stem colonization index (SCI) based on isolation of V. dahliae following artificial inoculations under conditions highly conducive for verticillium wilt. Ac‐13, Ac‐18, OutVert and StopVert showed a symptomless reaction to D V. dahliae. The mean amount of D V. dahliaeDNA quantified in stems of the four clones ranged from 3.64 to 28.89 pg/100 ng olive DNA, which was 249 to 1537 times lower than that in susceptible Picual olive. The reduction in the quantitative stem colonization of wild olive clones by D V. dahliae was also indicated by a sharp decrease in the SCI. Overall, there was a pattern of decreasing SCI in acropetal progression along the plant axis, as well as correlation between positive reisolation and quantification of pathogen DNA. The results of this research show that wild olive clones Ac‐13, Ac‐18, OutVert and StopVert have a valuable potential as rootstocks for the management of verticillium wilt in olive.  相似文献   

12.
Spread of Verticillium wilt into newly established olive orchards in Andalucía, southern Spain, has caused concern in the olive industry in the region. This spread may result from use of Verticillium dahliae-infected planting material, which can extend distribution of the highly virulent, defoliating (D) pathotype of V. dahliae to new areas. In this study, a molecular diagnostic method for the early in planta detection of D V. dahliae was developed, aimed especially at nursery-produced olive plants. For this purpose, new primers for nested PCR were designed by sequencing a 992-bp RAPD marker of the D pathotype. The use of the specific primers and different nested-PCR protocols allowed the detection of V. dahliae pathotype D DNA in infected root and stem tissues of young olive plants. Detection of the pathogen was effective from the very earliest moments following inoculation of olive plants with a V. dahliae pathotype D conidia suspension as well as in inoculated, though symptomless, plants.  相似文献   

13.
Verticillium wilt (VW) in olive is best managed by an integrated disease management strategy, of which use of host resistance is a key element. The widespread occurrence of a highly virulent defoliating (D) Verticillium dahliae pathotype has jeopardized the use of commercial olive cultivars lacking sufficient resistance to this pathogen. However, the combined use of resistant wild olive rootstocks and Trichoderma spp. effective in the biocontrol of VW can improve the management of VW in olive. In vivo interactions between D V. dahliae and Trichoderma harzianum were studied in olive and wild olive plants displaying different degrees of resistance against this pathogen using confocal microscopy. This multitrophic system included wild olive clones Ac‐4 and Ac‐15, olive cv. Picual, and the fungal fluorescent transformants T. harzianum GFP22 and V. dahliae V138I‐YFP, the latter being obtained in this study. In planta observations indicated that V138I‐YFP colonizes the roots and stems of the olive and wild olive genotypes, and that GFP22 grows endophytically within the roots of them all. YFP fluorescence signal quantifications showed that: (i) the degree of root and stem colonization by the pathogen varied depending upon the susceptibility of the tested wild olive genotype, being higher in Ac‐15 than in Ac‐4 plants; and (ii) treatment with T. harzianum GFP22 reduced the extent of pathogen growth in both clones. Moreover, root colonization by strain GFP22 reduced the percentage of pathogen colonies recovered from stems of olive and wild olive plants.  相似文献   

14.
Verticillium wilt caused by Verticillium dahliae is one of the most threatening diseases of olive worldwide. For pre‐planting and post‐planting control of verticillium wilt in olive trees, availability of a rapid, reliable and non‐destructive method for detection of V. dahliae is essential. For such a method, suitable and easily performed sampling and efficient processing of samples for extraction of DNA are necessary. In this study, the suitability of young twig and leaf samples of olive trees, which are easy to collect and extract DNA from, were assessed for the detection of V. dahliae in routine procedures. The lower (about 50 cm from the tip) and top parts (about 5 cm from the tip) of twigs, as well as leaves from infected olive trees were screened for V. dahliae infection and distribution using real‐time PCR. The biomass of V. dahliae detected in individual twigs was highly variable, but there was no significant difference between mean quantities of V. dahliae DNA detected in top and lower parts of twigs. Furthermore, it was demonstrated that analysis of combined samples containing DNA extracted from five twigs of an infected tree accurately detected the presence of the pathogen. Similarly, testing combined samples of 5–10 leaves enabled reliable detection of the pathogen in an infected tree. The development of this assay enables reliable detection of V. dahliae in infected olive trees that can aid in management decisions for the implementation of integrated disease management.  相似文献   

15.
Verticillium longisporum and V. dahliae, causal agents of Verticillium wilt, are spreading through the cabbage fields of Gunma Prefecture. Using the V. longisporum-specific intron within the 18S rDNA and differences between ITS 5.8S rDNA sequences in Japanese isolates of V. longisporum and V. dahliae, we developed three quantitative nested real-time (QNRT) PCR assays. The QNRT-PCR quantification of V. longisporum or V. dahliae in cabbage field soil was consistent with the severity of Verticillium wilt disease in those fields. In field trials of resistant cultivar YR Ranpo grown for three seasons in soil infested with the pathogen, disease severity and pathogen density in the soil were significantly reduced in a field moderately contaminated by V. dahliae, but only slightly reduced in a highly contaminated field. These results suggest that continuous cultivation of a resistant cultivar is an effective way to reduce the pathogen population. QNRT-PCR assays provide a powerful analytical tool to evaluate the soil population dynamics of V. longisporum and V. dahliae for disease management.  相似文献   

16.
在宁南山区海原县关庄乡高台村试验田,采用膜下滴灌节水技术,研究了覆膜不滴灌、滴灌不覆膜、膜下滴灌和不滴灌不覆膜(CK)4种方式下马铃薯生育期的土壤养分、酶活性以及马铃薯产量的差异。结果表明:在0~20 cm和20~40 cm土层中,膜下滴灌种植条件下,与CK相比较,有机质含量分别提高了3.88%、18.23%,碱解氮提高了10.71%、18.75%,速效钾提高了5.92%、2.55%,生育期内土壤脲酶活性提高了27.05%~69.37%、0.17%~38.33%,碱性磷酸酶活性提高了12.70%~23.90%、 6.99%~28.93%,转化酶活性提高了5.65%~68.12%、8.41%~31.63%,纤维素酶活性提高了8.33%~32.94%、19.98%~108.82%,产量提高了107.90%;土壤养分与酶活性及马铃薯产量间存在显著正相关。研究得出,膜下滴灌可以改善土壤微生态环境,提高土壤酶活性,改善土壤养分循环能力,增加产量,是干旱半干区马铃薯旱作节水栽培的有效措施之一。  相似文献   

17.
A field experiment was conducted to study the spatial and temporal distributions of (EZ)-1,3-dichloropropene (1,3-D) in the soil and effects on pest control efficacy. An emulsifiable concentrate formulation of 1,3-D (Telone EC) was applied with drip irrigation at 47 kg AI ha−1 to two different depths (2.5 and 20.3 cm, respectively). Comparisons were made between the two drip treatments and a direct shank injection of 1,3-D (Telone II) at 112 kg AI ha−1. Concentrations of 1,3-D in soil air were measured at several locations over time to determine the spatial and temporal characteristics, and to calculate the concentration–time index (CT). Citrus nematodes (Tylenchulus semipenetrans) were placed in the fumigated soil at 25 cm depth and their mortality rates were compared to the calculated CT. Distributions of 1,3-D were found to be relatively uniform in both the drip irrigation and the shank injection treatment. An application rate of 47 kg ha−1 with drip irrigation was sufficient to achieve significant concentration levels in soil beds. Applying 1,3-D with direct shank injection at 112 kg ha−1 extended the measurable concentration levels to the furrows between the soil beds and to a depth of 1 m below the soil surface. Effective control of T. semipenetrans was achieved with both the drip irrigation and the shank injection. A threshold soil 1,3-D CT value of 12 μg h cm−3 was needed to reach a 100% efficacy for T. semipenetrans. The study indicates that 1,3-D fumigation may be carried out with drip irrigation at very low rate, and a CT index may be derived to aid in the determination of a minimum effective dosage. © 1999 Society of Chemical Industry  相似文献   

18.
灌溉和生草对猕猴桃园土壤质量的影响   总被引:1,自引:0,他引:1  
为探明灌溉和生草对猕猴桃园土壤质量的影响,于2016—2017年在陕西省眉县猕猴桃园试验地分别布设地面灌溉+除草(Ⅰ)、地面灌溉+自然生草(Ⅱ)、滴灌+除草(Ⅲ)和滴灌+自然生草(Ⅳ)4种处理,对试验地0~50 cm土层的土壤机械组成、物理和化学性质进行了统计分析,并利用土壤质量综合指数对土壤质量进行了评价,结果表明:与其他处理相比,Ⅲ处理使0~30 cm土层土壤容重和砂粒质量分数分别降低了0.02~0.24g·cm~(-3)和0.36%~5.25%,使土壤孔隙度、田间持水量、黏粒质量分数和土壤粒径分形维数分别增大了0.17%~7.17%、0.59%~2.53%、0.99%~7.15%和0.01~0.13;Ⅳ处理在0~30 cm土层中的速效磷和碱解氮与Ⅰ、Ⅱ处理无差异,显著高于Ⅲ处理10.75~109.55 mg·kg~(-1)和20.74~78.91 mg·kg~(-1)(P0.05),可使0~50 cm土层的速效钾、速效磷和碱解氮分别达到猕猴桃施肥标准的丰富、中等及中等水平;与其他处理相比,Ⅳ处理可使0~50 cm土层土壤黏粒质量分数增加了1.21%~2.66%,土壤粉粒质量分数减少了0.81%~1.41%,使土壤分形维数显著增加(P0.05),土壤质量综合指数最大,达0.619。因此,滴灌+自然生草(Ⅳ)的管理方式是猕猴桃园土地可持续性利用的有效措施。  相似文献   

19.
Verticillium dahliae Kleb. causes Verticillium wilts in many herbaceous and woody species. Many hosts of the pathogen are commonly cultivated in Andalucía (southern Spain), particularly major crops such as cotton, vegetables, almond, peach and, particularly, olive, in which the fungus causes Verticillium wilt of olive. Infective structures of the pathogen (microsclerotia), produced in the late phases of the infection cycle in senescent tissues of the infected plants, can be spread over short or long distances by a number of dispersal methods. Irrigation water is one of the factors implicated in this spread of V. dahliae. Indeed, increasing irrigation dosages in crops or an inadequate irrigation schedule have been identified as cultural practices favouring Verticillium wilt onset and severity in olive and other hosts. Most of the cultivated areas in the Guadalquivir Valley of Andalucía are irrigated by pumping stations using modern infrastructures that supply water to thousands of hectares of farm land, which are usually associated with irrigation communities. This study demonstrates that the pathogen survives in the sediment and particles suspended in water used for irrigation in different facilities of an irrigation community, that were involved in distributing water (main canal and reception tank of a investigated pumping station, irrigation pools and sand from filters). Thus microsclerotia moves from the pumping station to individual plots (olive and cotton cultivated farm) as viable microsclerotia, free or embedded in soil particles and plant debris, suspended in the irrigation water, or deposited in the sludge in piping systems or water storage ponds. We have detected amounts of inoculum in the solid pellet samples in these facilities that ranged from 2.7 to 6.7 microsclerotia per gram. Besides this, water from drippers in cultivated plots released into the soil a variable amount of infective propagules of the pathogen over time that accounted for 3.75 microsclerotia/m3 in some of the recording times. Therefore, irrigation water becomes an important source of inoculum that is very effectively involved in medium and long-distance spread of the pathogen.  相似文献   

20.
鲁北平原咸水滴灌对土壤水盐分布和棉花产量的影响   总被引:1,自引:0,他引:1  
鲁北平原是山东省重要的粮棉油生产基地,合理利用微咸水和咸水资源是亟待解决的问题。通过田间小区试验,以淡水滴灌处理为对照,设置不同矿化度咸水滴灌处理,研究全地膜覆盖条件下,咸水滴灌对棉花农田土壤水盐分布和产量的影响。结果表明,灌出苗水可以明显降低棉田主要根层土壤EC值,降低率在26.8%~29.0%之间。咸水滴灌减少了棉花对土壤水分的吸收,主要影响土层在40~100 cm,灌溉水矿化度越高,影响越大。与淡水滴灌相比,滴灌补灌矿化度6g·L-1以下的咸水对棉花产量没有明显的影响,而滴灌8g·L-1的咸水在降水偏少的年份能明显降低棉花产量。从土壤盐分的积累来看,利用滴灌补灌一次6g·L-1以下的咸水,通过黄河水和夏季降水淋洗土壤盐分,不会造成棉花根系分布层土壤盐分的积累。该研究结果可为鲁北平原区咸水利用提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号