首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deposit pattern of foliar‐applied agrochemicals, and its relation to their bio‐efficacy, has major practical importance. Thus, in our experiments, we evaluated the relevance of the deposition properties of glyphosate for its bio‐efficacy. The deposition pattern of glyphosate monodroplets was influenced by using surfactant and by applying the droplets with or without kinetic energy to the plant foliage. Monodroplets (1 μL) of glyphosate, formulated with or without ethoxylated rapeseed oil surfactant (RSO) having on average 5, 10, 30 or 60 ethylene oxide units (EO), as well as one commercial glyphosate product (CGP), were applied either by carefully placing the droplet on the foliage with a pipette (kinetic energy assumed to be near zero) or by a monodroplet generator (with kinetic energy). We selected two easy‐to‐wet (Stellaria media and Viola arvensis) and two difficult‐to‐wet (Chenopodium album and Setaria viridis) weed species as target plants. The deposit structure was determined using a scanning electron microscope with energy dispersive x‐ray microanalysis. The kinetic energy of the droplet had no consistent effect on the deposit structure or the bio‐efficacy of glyphosate formulations. In contrast, surfactants differing in EO unit, affected both the deposit structure and the bio‐efficacy of the formulations, depending upon the species. In easy‐to‐wet species, the increase in EO unit of RSO surfactant failed to affect the deposit area of glyphosate and its bio‐efficacy. However, in difficult‐to‐wet species, the increase in EO unit of RSO surfactant reduced the deposit area of glyphosate and enhanced its bio‐efficacy.  相似文献   

2.
Aim of our study was to exploit the relation between deposit structure at the microscale and the uptake and biological efficacy of herbicides. For this purpose, we analysed the relevance of the deposit structure of diquat dibromide, as affected by surfactants, on the spatially resolved chlorophyll fluorescence (ChlF) and the desiccation of the leaves. The present study is a sequential work to our studies with the systemic compound glyphosate. On that basis, we hypothesized here that larger deposits of diquat are negatively related to the bio-efficacy of the compound. By using selected ethoxylated rapeseed oil adjuvants (RSO 5, RSO 10, RSO 30, RSO 60) we influenced the deposit properties of diquat dibromide droplet residue on the leaves of easy-to-wet Viola arvensis and the difficult-to-wet Chenopodium album species. With the spatially-resolved pulse amplitude modulated (PAM) ChlF technique we demonstrated the effect of diquat on the physiology of the tissue. As shown, the RSO surfactants did not affect the area of diquat residue on the easy-to-wet leaves of V. arvensis; this trend is similar to those observed for ChlF and the herbicide desiccation potential. In contrary, on C. album, decreased deposit area of diquat droplet was associated with increased effect on ChlF parameters and increased desiccation potential of the herbicide, thus explaining its higher foliar uptake.  相似文献   

3.
BACKGROUND: In the present study the principle of energy dispersive X‐ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X‐rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. RESULTS: Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak‐to‐background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO3)2 improved the accuracy of the quantification slightly but led to the formation of particular, non‐typical microstructured deposits. The suitability of SEM‐EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. CONCLUSION: Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Fifteen field experiments were conducted from 2002 to 2005 to determine the influence of the nozzle type, spray volume, spray pressure, and herbicide rate on herbicidal efficacy in soybean. There was no effect of the nozzle type on herbicidal efficacy with fomesafen, bentazon, glyphosate, and cloransulam‐methyl when applied at the manufacturer's recommended rate. The control of Echinochloa crus‐galli (barnyardgrass) with quizalofop‐p‐ethyl was improved when applied with flat fan (FF) nozzles compared with air induction (AI) nozzles. There was an increase in weed control with the FF nozzles compared with the AI nozzles in four of the 13 comparisons when the herbicides were applied at half the recommended rate, while in two situations, application with the AI nozzles resulted in improved weed control. With the FF nozzles, there was no effect of the water carrier volume on weed control with bentazon, glyphosate, and cloransulam‐methyl. The control of Abutilon theophrasti (velvetleaf) and Chenopodium album (common lambsquarters) with fomesafen and E. crus‐galli with quizalofop‐p‐ethyl was improved at the higher water carrier volume. With the AI nozzles, the control of A. theophrasti and Ambrosia artemisiifolia (common ragweed) with fomesafen and E. crus‐galli with quizalofop‐p‐ethyl was improved at the higher water carrier volume, while the control of A. theophrasti and Polygonum persicaria (ladysthumb) was improved with glyphosate at the lower water carrier volume. With the AI nozzles, the control of C. album with bentazon and E. crus‐galli with quizalofop‐p‐ethyl was improved at the higher spray pressure. There was no effect of the nozzle type on the soybean yield with glyphosate, cloransulam‐methyl, and quizalofop‐p‐ethyl. The use of the FF nozzles compared with the AI nozzles to apply fomesafen and bentazon increased the soybean yield by 6 and 7%, respectively. Based on this study, the optimum nozzle type, water carrier volume, and spray pressure is herbicide‐ and weed species‐specific.  相似文献   

5.
We examined the toxic effects of glyphosate to adult female Lepthyphantes tenuis (Araneae, Linyphiidae), a common spider of agricultural habitats. The overspray technique was used to investigate the effect of the herbicide on forty individuals in each of six glyphosate treatments (2160, 1440, 1080, 720, 360 and 180 g ha?1) and a distilled water control. Spiders collected from the wild were individually placed in exposure chambers and checked every 24 h over a 72‐h experimental period. Mortality of L tenuis remained at less than 10% in all treatments at 24 and 48 h after spray application, and only increased marginally (to 13%) after 72 h. These results support other limited data which suggest that glyphosate is ‘harmless’ to non‐target arthropods. More extended laboratory testing to investigate any side‐effects of glyphosate on the life history of L tenuis and other non‐beneficial invertebrates is required. © 2001 Society of Chemical Industry  相似文献   

6.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

7.
Surfactant and salt affect glyphosate retention and absorption   总被引:1,自引:0,他引:1  
The influence of nonylphenoxy surfactants and glyphosate salt formulation on spray retention, phytotoxicity and [14C]glyphosate uptake was investigated in wheat (Triticum aestivum L). and Kochia scoparia L. The amount of spray retained, and uptake of [14C]glyphosate increased with increasing hydrophilic-lipophilic balance (HLB) value of surfactants. The volume of spray delivered to the plant treatment area and retained by wheat and K. scoparia plants increased with increasing surfactant HLB values, but this only partly accounted for the higher spray retention. Spray retention by leaves of plants was not affected by calcium chloride, either alone or with ammonium sulphate in the glyphosate spray solution. [14C]Glyphosate absorption by wheat and K. scoparia was reduced by calcium chloride alone, but not in mixtures with ammonium sulphate, regardless of surfactant. Phytotoxicity and uptake of glyphosate salt formulations for wheat was: isopropylamine > ammonium > sodium > calcium; these results indicate that the surfactant selected is important to maintain glyphosate efficacy and that sodium and calcium cations antagonize glyphosate by forming salts that are absorbed less than commercial isopropylamine formulations.  相似文献   

8.
为提高草甘膦防治空心莲子草Alternanthera philoxeroides时药剂的有效利用率,用丽春红S为示踪剂研究了草甘膦药液在空心莲子草叶片的沉积特性。结果表明,用体积中径(VMD)149.5~233.7 μm的雾滴喷雾,草甘膦在空心莲子草叶片上的沉积量在体积中径为157.3 μm时最多,随着雾滴体积中径增大,沉积量减少。雾滴体积中径157.3 μm与施药液量339 L/hm2处理的沉积量是雾滴体积中径233.4 μm与施药液量694.5 L/hm2处理的1.54倍。施药液量超过382.5 L/hm2时,草甘膦药液的流失明显增多。800 mg/L草甘膦药液在空心莲子草叶片上的最大稳定持留量约为 4.92 μg/cm2。结果表明,喷雾施药时采用小雾滴和较低施药液量,可大幅度提高草甘膦在空心莲子草上的沉积量。  相似文献   

9.

BACKGROUND

Regulations in 2021 required the addition of a volatility reduction agent (VRA) to dicamba spray mixtures for postemergence weed control. Understanding the impact of VRAs on weed control, droplet dynamics, and spray pH is essential.

RESULTS

Adding glyphosate to dicamba decreased the solution pH by 0.63 to 1.85 units. Across locations, potassium carbonate increased the tank-mixture pH by 0.85 to 1.65 units while potassium acetate raised the pH by 0.46 to 0.53 units. Glyphosate and dicamba in tank-mixture reduced Palmer amaranth control by 14 percentage points compared to dicamba alone and decreased barnyardgrass control by 12 percentage points compared to glyphosate alone 4 weeks after application (WAA). VRAs resulted in a 5-percentage point reduction in barnyardgrass control 4 WAA. Common ragweed, common lambsquarters, and giant ragweed control were unaffected by herbicide solution 4 WAA. Dicamba alone produced a larger average droplet size and had the fewest driftable fines (% volume < 200 μm). Potassium acetate produced a larger droplet size than potassium carbonate for Dv0.1 and Dv0.5. The addition of glyphosate to dicamba decreased droplet size from the entire spray droplet spectrum (Dv0.1, Dv0.5, Dv0.9).

CONCLUSION

A reduction in spray pH, droplet size, and weed control was observed from mixing dicamba and glyphosate. It may be advisable to avoid tank-mixtures of these herbicides and instead, apply them sequentially to maximize effectiveness. VRAs differed in their impacts on spray solution pH and droplet dynamics, but resulted in a minimal negative to no impact on weed control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

11.
A non-volatile oil-based spray mix of a low-vapour-pressure insecticide, aminocarb, containing an oil-soluble red dye was applied at a dosage rate of 70 g AI in 1-5 litre ha?1, using a fixed wing aircraft equipped with four ?Micronair’?® AU3000 atomizers, over a 1000 × 500 m spray block selected in Bathurst, New Brunswick, Canada. Spray was applied twice, at an interval of five days, to provide a total dosage rate of 140 g AI in 3.0 litre ha?1. Spray mass recovery was assessed on glass plates and droplets were collected on ?Kromekote’?® cards, both at ground level. The stain sizes were grouped into different categories. The area containing the stains was excised, and the aminocarb present was quantified by gas-liquid chromatography (GLC). The mass of aminocarb per droplet in each stain size category was evaluated. From the mass, the spherical droplet diameter (d), number and volume median diameters (DN.5 and Dv.5 respectively), a new parameter [mass (of aminocarb) median diameter] (DM.5), and the droplet size spectra were calculated. The DM.5 for the first application was 56 μm, which was identical to the Dv.5. whereas the DN.5 was smaller at 45 μm. The corresponding values for the second application were: DM.5 = Dv.5 = 63 μm, but the DN.5 was 53 μm. Because the spray mix was non-volatile, all the droplet size spectra parameters were identical both at spray release height and at ground level. The present study has provided, for the first time in the literature, a novel method to determine directly the spherical diameters of the droplets deposited on artificial samplers, without having to go through the tedious procedures of spread factor measurements under laboratory conditions. In fact, the present study has made it possible to calculate spread factors under field conditions, by using the stain diameters measured and the spherical diameters calculated from the aminocarb concentration levels.  相似文献   

12.
The effectiveness of a homologous series of biodegradable rapeseed oil derivatives (triglyceride ethoxylates; Agnique RSO series containing an average of 5, 10, 30 and 60 units of ethylene oxide (EO) as adjuvants for foliage-applied, water-soluble, systemic active ingredients was evaluated employing glyphosate as an example. Previous experiments had revealed that the surfactants used are not phytotoxic at concentrations ranging from 1 to 10 g litre-1. The experiments were performed using Phaseolus vulgaris L and nine selected weed species, grown in a growth chamber at 25/20 (+/- 2) degrees C day/night temperature and 40/70 (+/- 10)% relative humidity. The surfactants were evaluated for enhancement of spray retention, and foliar penetration biological efficacy of glyphosate. Glyphosate was applied at a concentration of 43 mM. The surfactants were added at concentrations of 1 g litre-1. The commercial glyphosate 360 g AE litre-1 SL Roundup Ultra and unformulated glyphosate served as references. The surfactants used improved spray retention, foliar penetration and biological efficacy. Some of the formulations were comparable to the performance of Roundup Ultra in the aspects evaluated; some were even more effective in enhancing spray liquid retention and promoting glyphosate phytotoxicity in several plant species. In these studies Agnique RSO 60 generally was most effective.  相似文献   

13.
Background: The efficacy of aerial electrostatic‐charged sprays was evaluated for spray deposit characteristics and season‐long control of sweet potato whitefly (SWF), Bemisia tabaci Genn. biotype B (aka B. argentifolii Bellows & Perring), in an irrigated 24 ha cotton field. Treatments included electrostatic‐charged sprays at full and half active ingredient (AI) label rate, uncharged sprays and conventional sprays applied with CP nozzles at full label rate with several different insecticides. Results: Spray droplet size was significantly smaller for electrostatic‐charged sprays than for conventional sprays in top‐ and mid‐canopy locations. The seasonal mean numbers of viable eggs and live large nymphs on cotton treated with electrostatic‐charged sprays were comparable with those on cotton treated with conventional applications. Lethal concentration (LC50) for adults for electrostatic‐charged sprays was comparable with that for conventional sprays. Conclusion: The amenability of electrostatic‐charged sprays to a wide array of pesticides with different chemistries should be a useful tool in combating insect resistance. Results reported here suggest that the potential exists for obtaining increased efficacy against whiteflies using an electrostatic spray charging system, and that additional research will be required to improve charge‐to‐mass (Q/M) ratio in order to increase deposition of pest control materials to the lower surfaces of cotton leaves where the whiteflies reside. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Glyphosate drift from aerial application onto susceptible crops is inevitable, yet the biological responses to glyphosate drift in crops are not well characterized. The objectives of this research were to determine the effects of glyphosate drift from a single aerial application (18.3 m swath, 866 g AE ha?1) on corn injury, chlorophyll content, shikimate level, plant height and shoot dry weight in non‐glyphosate‐resistant (non‐GR) corn. RESULTS: One week after application (WAA), corn was killed at 3 m from the edge of the spray swath, with injury decreasing to 18% at 35.4 m downwind. Chlorophyll content decreased from 78% at 6 m to 22% at 15.8 m, and it was unaffected beyond 25.6 m at 1 WAA. Shikimate accumulation in corn decreased from 349% at 0 m to 93% at 15.8 m, and shikimate levels were unaffected beyond 25.6 m downwind. Plant height and shoot dry weight decreased gradually with increasing distance. At a distance of 35.4 m, corn height was reduced by 14% and shoot dry weight by 10% at 3 WAA. CONCLUSIONS: Corn injury and other biological responses point to the same conclusion, that is, injury from glyphosate aerial drift is highest at the edge of the spray swath and decreases gradually with distance. The LD50 (the lethal distance that drift must travel to cause a 50% reduction in biological response) ranged from 12 to 26 m among the biological parameters when wind speed was 11.2 km h?1 and using a complement of CP‐09 spray nozzles on spray aircraft. Published 2010 by John Wiley & Sons, Ltd.  相似文献   

15.
16.
We have examined the indirect effect of the herbicide glyphosate on the spider Lepthyphantes tenuis in field margins. Glyphosate was applied to a randomised block design field experiment comprising 360, 720 and 1440 g glyphosate AE ha?1 treatments and an unsprayed control. Spiders were sampled in each month from June to October 1998. Spider abundance was significantly lower in all the treatments than in the unsprayed control. Abundance was also significantly lower in the 720 and 1440 g treatments than in the 360 g treatment. No significant difference could be detected between the 720 and 1440 g treatments. Poisson regression models showed that patterns of decline in L tenuis were related to increasing dead vegetation and decreasing vegetation height. Glyphosate applications only had a within‐season indirect habitat effect on L tenuis as field margins sprayed 16 months after an application of 360 g glyphosate ha?1 showed no detrimental effect. © 2001 Society of Chemical Industry  相似文献   

17.
The adhesion of a spray droplet upon initial contact with a leaf surface is extremely important to spray efficacy and is dependent on dynamic interactions between droplets (formulation, size, velocity) and leaf (micro‐topography, surface chemistry, veininess, hairiness and orientation). A ‘universal’ spray droplet adhesion model has previously been developed, using 50% aqueous acetone contact angles as a measure of leaf surface properties; this model satisfactorily predicts initial adhesion over a range of formulation surface tensions, droplet sizes and velocities. However, it failed to fit data from hairier leaves. This study investigates initial spray droplet adhesion on hairy leaves. Two categories of hairy leaves were identified by how the droplets penetrate the leaf hairs, Wenzel (hairy) and Cassie–Baxter (super hairy). For the Wenzel‐type, a simple constant accounted for the increased droplet shatter caused by the hairs. For the Cassie–Baxter‐type, a cushioning factor was introduced to account for the absorption of kinetic energy at impact by the hair mat. The cushioning factor was estimated by measuring the relative height of the hair mat. By including these two parameters, the new model successfully predicted the mean adhesion of non‐hairy, hairy and super‐hairy plants (R2 = 0.96). This model and the underlying principles determining hairy leaf adhesion developed in this article will help develop spray formulations effective at targeting hairy‐leaved weed and crop species.  相似文献   

18.
BACKGROUND: In recent years, several studies have shown the impact of adjuvants on the characteristics of herbicide deposits on leaf surfaces. Until now, most studies have addressed the distribution of active ingredients (AIs), whereas few experiments have focused on the location of the adjuvants. The objective of this study was a systematic examination of the particle distribution profile of both the AI (glyphosate, Gly) and the adjuvants after the application of sessile microdroplets on hydrophobic (Teflon) and hydrophilic (glass and aluminium) model surfaces. RESULTS: The association degree (AD) was surface dependent and specific for the tested adjuvants. In general, the rather hydrophobic adjuvant RSO 5 showed decreasing AD with Gly at increasing relative humidity (RH) levels. The rather hydrophilic RSO 60 adjuvant displayed higher AD between the compounds at a higher RH. A high concentration of the adjuvant reduced the AD for both of the RSO adjuvants evaluated. CONCLUSION: The combination of surface properties, the type of adjuvant and the relative humidity determines the degree of association between Gly and the adjuvants. The present results suggest that the interaction between the AI and an adjuvant determines whether spatial separation occurs, whereas physical processes (e.g. capillary particle movement, inward and outward Marangoni flows and the evaporation rate) are decisive for the extent of the separation. Coffee‐ring structures were formed exclusively with the adjuvant + Gly mixtures, whereas Gly alone formed either one big deposit or several small islands distributed within the droplet footprint. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Echinochloa colona is the most common grass weed of summer fallows in the grain‐cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate‐resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate‐susceptible populations was evaluated in three field experiments and on both glyphosate‐susceptible and glyphosate‐resistant populations in two pot experiments. The treatments were knockdown and pre‐emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha?1 provided good control of small glyphosate‐susceptible plants (pre‐ to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha?1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre‐emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.  相似文献   

20.
为探索能够减轻或消除Mn2+对草甘膦拮抗效应的方法,以高羊茅为试材,将赤霉素(GA3)与草甘膦和硫酸锰(Mn2+质量分数为0.1%)混用,研究了赤霉素对Mn2+降低草甘膦药效的缓解作用。结果表明:赤霉素+草甘膦+硫酸锰处理组高羊茅比同剂量草甘膦+硫酸锰处理组叶色更黄,萎蔫更严重,与同剂量草甘膦单剂处理组比较接近,其中加入50 mg/L赤霉素处理组缓解草甘膦拮抗效应的效果最好。赤霉素+草甘膦+硫酸锰处理组高羊茅的干、鲜重及叶绿素含量均低于草甘膦+硫酸锰处理组,而丙二醛和莽草酸含量均明显高于草甘膦+硫酸锰处理组。处理后第6天,赤霉素+草甘膦+硫酸锰组莽草酸含量分别比草甘膦+硫酸锰组增加了49.8%(加入50 mg/L赤霉素)和28.8%(加入30 mg/L赤霉素),差异显著;处理后第2天,赤霉素+草甘膦+硫酸锰组丙二醛含量分别比草甘膦+硫酸锰组增加了54.1%(加入50 mg/L赤霉素)和52.9%(加入30 mg/L赤霉素),差异显著。研究表明,将赤霉素与锰肥和草甘膦混合喷施,将有可能在一定程度上缓解Mn2+对草甘膦的拮抗效应,保证草甘膦的除草效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号