首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to reveal connexin 43 (Cx43) mRNA and protein expression in porcine foetal gonads using RT‐PCR, immunohistochemistry and Western blot analysis. Expression of Cx43 was investigated in porcine foetal ovaries and testes on days 50, 70 and 90 post coitum (p.c.). RT‐PCR results indicated that Cx43 mRNA was expressed in both foetal ovaries and testes at all gestational ages examined. Cx43 protein was found in the foetal ovary but its distribution varied across ovarian compartments and changed during development. In foetal ovaries, Cx43 was localized between the interstitial cells surrounding egg nests on all investigated days of prenatal period. Moreover, Cx43 expression was observed between germ cells on day 50 p.c. as well as between pre‐granulosa and granulosa cells of primordial and primary follicles on days 70 and 90 p.c. In the foetal testes, Cx43 protein was detected between neighbouring Leydig cells on all examined days of prenatal period and between adjacent Sertoli cells exclusively on day 90 p.c. The presence of Cx43 protein in all investigated foetal gonads was confirmed by Western blot analysis. Cx43 protein detection between pre‐granulosa cells of primordial follicles suggests its role in regulation of the initial stages of follicle development. The Cx43 immunoexpression between neighbouring Leydig and between Sertoli cells indicates its involvement in controlling their functions. We propose that Cx43‐mediated gap junctional communication is involved in the regulation of porcine foetal gonadal development.  相似文献   

2.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

3.
Recent reports have indicated a role of cell-to-cell interactions during gonadal development and functions. Numerous reports indicate that fetal hormonal disruption induces abnormalities in the developing reproductive system and, therefore, may interfere with reproductive functions later in adult life. Hence, this study investigated the effect of androgen deficiency during late prenatal periods on the gap junction-associated connexin 43 (Cx43) and the adherens junction-associated β-catenin expression in the fetal porcine gonads. Thus, pregnant gilts were injected with anti-androgen flutamide (for 7 d, 50 mg/kg BW per day) or corn oil (control groups) starting at 83 (GD90) or 101 (GD108) gestational day. On GD90 and GD108 the fetuses were excised and fetal gonads were obtained. To assess Cx43 and β-catenin expression real-time PCR and immunohistochemistry were performed. In fetal testes, Cx43 was localized between Leydig cells, whereas β-catenin was observed mainly within the seminiferous tubules. In fetal ovaries, Cx43 was detected between interstitial cells and between granulosa cells of forming follicles, whereas β-catenin was found within egg nests, in oocytes' membrane, and in granulosa cells of forming follicles. Immunohistochemistry showed decreased Cx43 and β-catenin expression in fetal gonads from flutamide-treated pigs compared with respective controls. However, the ovaries from animals treated with flutamide on GD108 showed increased Cx43 expression. The changes of Cx43 and β-catenin expression after prenatal flutamide treatment were confirmed at the mRNA level. These findings suggest that androgen deficiency during late gestation may lead to disturbed intercellular interactions in fetal porcine testes affecting testicular functions, as well as impaired follicular formation in fetal ovaries. Our results further signify the role of androgens in the regulation of cell-to-cell interactions within fetal porcine gonads.  相似文献   

4.
The growth of ovarian follicles is accompanied by fluid‐filled antrum formation. Water movement within the follicular wall is predominantly transcellular via membranous water channels named aquaporins (AQPs). Androgens are important regulators of mammalian folliculogenesis, and their prenatal and/or neonatal deficiency affects female fertility in adulthood. Therefore, this study was performed to determine whether gestational or neonatal exposure to the anti‐androgen flutamide influences androgen‐dependent AQP5 expression in pre‐antral and large antral follicles of adult pigs. Flutamide was injected into pregnant gilts between days 80 and 88 of gestation and into female piglets between days 2 and 10 post‐natally. The ovaries were collected from flutamide‐treated and non‐treated (control) sexually mature pigs. In pre‐antral follicles, AQP5 mRNA and protein levels were both downregulated following maternal (p < 0.01 and p < 0.01, respectively) and neonatal (p < 0.01 and p < 0.01, respectively) flutamide exposure. Likewise, the expression of mRNA (p < 0.01 and p < 0.001, respectively) and protein (p < 0.05 and p < 0.01, respectively) for AQP5 were diminished in large antral follicles in both groups. Immunohistochemistry showed decreased intensity of AQP5 immunoreaction in pre‐antral (p < 0.01) and large antral (p < 0.001) follicles following flutamide treatment. Moreover, radioimmunological analysis revealed that changes observed in AQP5 expression corresponded with diminished follicular androgens production after both maternal (p < 0.05 and p < 0.05, respectively) and neonatal (p < 0.05 and p < 0.01, respectively) flutamide administration. Therefore, AQP5 appears to be a potential regulator of follicular fluid accumulation, under androgen control, and may be a key factor in antral follicle growth.  相似文献   

5.
Studies with sheep are important to improve our knowledge about the factors that control folliculogenesis in mammals and to explore possible physiological differences among species. The aims of this study were to characterize FGF‐2 protein expression in ovine ovaries and to verify the effect of FGF‐2 on the morphology, apoptosis and growth of ovine pre‐antral follicles cultured in vitro. After collection, one fragment of ovarian tissue was fixed for histological analysis and TUNEL analysis (fresh control). The remaining fragments were cultured for 7 days in control medium (α‐MEM+) alone or supplemented with FGF‐2 at different concentrations (1, 10, 50, 100 or 200 ng/ml). After culturing, ovarian tissue was destined to histology and TUNEL analysis, and oocyte and follicle diameters were measured. The immunostaining for FGF‐2 was observed in oocytes from primordial, primary and secondary follicles, as well as in granulosa cells of secondary and antral follicles. The percentage of normal follicles was similar among control medium, 1 and 10 ng/ml FGF‐2, and significantly higher than those observed in 50, 100 or 200 ng/ml FGF‐2. A significant increase in follicle diameter was observed when tissues were cultured in 10, 50, 100 or 200 ng/ml FGF‐2 compared with the fresh control and the other treatments. Similar results were observed for oocyte diameter in tissues cultured with 50, 100 or 200 ng/ml FGF‐2 (p < 0.05). However, the percentage of apoptotic cells only decreased (p < 0.05) in ovarian tissues cultured in 1 or 10 ng/ml FGF‐2 compared with the control medium and other FGF‐2 treatments. In conclusion, this study demonstrated the presence of FGF‐2 in ovine ovaries. Furthermore, 10 ng/ml FGF‐2 inhibits apoptosis and promotes ovine follicle growth. As the sheep ovary is more similar to that of humans, the culture system demonstrated in this work seems to be an appropriate tool for studies towards human folliculogenesis.  相似文献   

6.
The objective of this study was to determine apoptotic cell localization in preantral and antral follicles of porcine ovaries. Additionally, the proportion of cells undergoing apoptosis was also compared between delayed puberty gilts and normal cyclic gilts. Ovarian tissues were obtained from 34 culled gilts with age and weight of 270.1 ± 3.9 days and 143.8 ± 2.4 kg, respectively. The gilts were classified according to their ovarian appearance as ‘non‐cyclic’ (n = 7) and ‘cyclic’ (n = 27) gilts. The terminal deoxynucleotidyl transferase‐mediated dUTP nick end labelling (TUNEL) assay was used to determine apoptotic cell expression in different compartments of the ovarian tissue sections. All apparent preantral (n = 110) and antral (n = 262) follicles were evaluated using image analysis software. It was found that apoptotic cells were expressed in both granulosa (22.2%) and theca cell layers (21.3%) of the follicles in the porcine ovaries. The proportion of apoptotic cells in the granulosa layer in the follicles was positively correlated with that in the theca layer (r = 0.90, p < 0.001). Apoptosis did not differ significantly between preantral and antral follicles in either granulosa (27.8% and 26.4%, p > 0.05) or theca cell layers (28.6% and 26.5%, p > 0.05). The proportion of apoptotic cells in non‐cyclic gilts was higher than cyclic gilts in both granulosa (31.7% and 22.6%, p < 0.001) and theca cell layers (34.8% and 20.2%, p < 0.001). This study indicated that apoptosis of the granulosa and theca cell layers in the follicles was more pronounced in the ovarian tissue of delayed puberty gilts than cyclic gilts. This implied that apoptosis could be used as a biologic marker for follicular development/function and also that apoptosis was significantly associated with anoestrus or delayed puberty in gilts, commonly observed in tropical climates.  相似文献   

7.
8.
Wilms’ tumour 1 gene (WT1) is essential for the development of mammalian urogenital system. However, the expression pattern of WT1 in the development of porcine urogenital organs is still unclear. Here, we examined the expression of WT1 mRNA and protein in porcine kidneys, ovaries and testes from embryonic days 35 and 60 (E35d, E60d, n = 3) to the newborn (0d, n = 4) and adult (210d, n = 3) stages, using real‐time PCR and immunofluorescent staining. Real‐time PCR analysis showed that porcine kidneys, ovaries and testes all expressed high level of WT1 mRNAs, especially in adult testes (p < 0.05 or 0.01 vs. kidney and ovary, respectively). Morphologically, characteristic microstructures of the kidneys, ovaries and testes were observed and discerned at all four stages. Immunofluorescently, WT1 expression was detected in a dynamic and context‐specific pattern during the development of these organs. Taken together, porcine urogenital organs express relatively high levels of WT1 mRNA. Dynamical and context‐specific expression profile of WT1 in these organs occurs during their development, implying its close association with the development and function of porcine kidney, ovary and testis.  相似文献   

9.
The variation in the kidding size of Black Bengal and Sirohi breed of goats makes them an interesting genetic material to study the underlying genetic mechanism of prolificacy. Accordingly, we studied the comparative ovarian morphometry including disparity in numbers of antral follicles of different sizes between these two breeds. Further, we evaluated the differential expression of the important candidate genes (viz., BMP15, GDF9 and BMPR1B) known to influence the ovulation rates and the prolificacy. The ovaries of Black Bengal (n = 20) goat were lighter (p < 0.01) in weight and smaller (p < 0.01) in diameter than those of Sirohi (n = 19) goats but possessed more numbers (p < 0.05) of corpus luteum (CL), large and small antral follicles. Quantitative real‐time PCR (RT‐qPCR) analysis revealed differential expression of mRNAs encoding for the BMP15 and GDF9. Small antral follicles of Black Bengal goats expressed 2.78‐fold more (p < 0.05) of BMP 15 than those of Sirohi goat. Expression of BMP15 (p < 0.01) and GDF9 (p < 0.05) mRNAs was more abundant in the small than the large antral follicles of Black Bengal goat. The more numbers of antral follicles per unit of ovarian mass and differential expression of BMP15 and GDF9 may serve as an important clue for higher prolificacy.  相似文献   

10.
The objective of this study was to investigate the effect of newly developed soya milk Tris (SMT)‐based phytoextender as an alternative to egg yolk Tris (EYT) extender used for cryopreservation of buffalo (Bubalus bubalis) spermatozoa on apoptosis. Fresh buffalo semen (control without dilution) was cryopreserved in conventional EYT (20% egg yolk v/v in Tris) and SMT (25% soya milk v/v in Tris) extender and used for the assessment of expression of apoptotic proteins. Proteins extracted from a total number of nine ejaculates from three individual buffalo bulls chosen at random were separated using SDS–PAGE followed by immunoblotting against caspase‐8, caspase‐9, caspase‐3, poly(ADP‐ribose)polymerase (PARP), cytochrome c and apoptosis inducing factor (AIF). In addition, fluorescence microscopy was used for the detection of mitochondrial membrane potential (JC‐1 assay) and apoptotic cells (annexin V‐FITC/PI assay). The results obtained clearly indicate the significant (p < 0.05) reduction in the expression of caspase‐3 (27 kDa), caspase‐8 (53 kDa), caspase‐9 (50 kDa) precursor and cytochrome c (17 kDa) in semen cryopreserved in SMT extender in comparison with EYT extender. A non‐significant (p > 0.05) reduction in expression of PARP‐DNA‐binding subunit (24 kDa) was observed in SMT extender. No expression of AIF was found in cryopreserved semen samples. A significant (p < 0.05) increase in the mean percentage of cells having high mitochondrial membrane potential and a non‐significant (p > 0.05) decrease in late apoptotic cells (AN+/PI+) was observed in SMT extender when compared to EYT extender. The results demonstrated that cryopreservation of buffalo semen in SMT‐based phytoextender can replace the traditional egg yolk extenders as it reduces the expression of apoptotic proteins maintaining high mitochondrial membrane potential and gives better protection to sperms in terms of its non‐animal origin.  相似文献   

11.
Normal metabolic activity in ovarian follicles may result in oxidative stress and damage to oocytes. The aim of this study was to evaluate expression of the natural anti‐oxidants paraoxonase (PON) 1, 2 and 3 in granulosa cells and PON1 activity in follicular fluid (FF) and plasma of dairy cows. For the first experiment, ovaries were collected from cows at slaughter, after which follicles were dissected and classified as oestrogen active (EAF) or atretic (ATF). Expression of PON1, PON2 and PON3 mRNA was evaluated in granulosa cells, and activity of PON1 was measured in FF. PON1 mRNA was undetectable in granulosa cells, PON2 mRNA expression was not different between follicle types, and PON3 mRNA tended to be higher in EAF (p = 0.11). The activity of PON1 in FF was higher (p = 0.01) for EAF (82.6 ± 8.0 kU/L) than ATF (53.9 ± 6.8 kU/L), as were high‐density lipoproteins (HDL), low‐density lipoproteins (LDL) and total cholesterol concentrations. In the second experiment, we aimed to compare plasma and FF PON1 activity in early lactation Holstein cows (n = 15) with pre‐ovulatory EAF. Activity of PON1 was twofold higher (p < 0.0001) in plasma (122.5 ± 11.1 kU/L) than in FF (61.4 ± 5.2 kU/L). Plasma concentrations were also higher (p < 0.0001) for HDL, LDL and total cholesterol when compared to FF. In conclusion, FF concentrations of PON1, HDL, LDL and total cholesterol were higher in healthy oestrogen active bovine follicles than in atretic follicles. PON1 was not expressed by granulosa cells indicating that high PON1 activity in bovine FF is apparently derived by transfer from blood in association with HDL.  相似文献   

12.
The expression of melatonin type 1 (MT1) and FSH (FSHR) receptors in caprine ovaries and the effects of these hormones on the in vitro development of isolated pre‐antral follicles were evaluated. Follicles (≤200 μm) were cultured for 12 days in α‐MEM (control) or melatonin (100 or 1000 pg/ml) or sequential melatonin medium (100 pg/ml: from day 0 to day 6; 1000 pg/ml: from day 6 to day 12; experiment 1) and in control or sequential FSH (100 ng/ml from day 0 to day 6; 500 ng/ml from day 6 to day 12) or sequential melatonin or this latter plus sequential FSH (experiment 2). MT1 and FSHR expressions were observed in granulosa cells from secondary and antral follicles. The oocytes from primordial and primary follicles also express FSHR. Sequential melatonin increased the percentage of normal follicles and oocyte recovery compared with the control or melatonin (1000 pg/ml) at day 12. In experiment 2, all the treatments increased the normal follicles and growth compared with the control. In conclusion, this study demonstrated the presence of MT1 and FSHR in caprine ovaries. The addition of increased concentrations of melatonin (sequential medium) or FSH can be used to promote the in vitro development of caprine pre‐antral follicles.  相似文献   

13.
Luteinizing hormone receptor (LHR) is a specific membrane receptor on the granulosa and theca cells that bind to luteinizing hormone (LH), resulting in androgen and progesterone production. Hence, the regulation of LHR expression is necessary for follicle maturation, ovulation and corpus luteum formation. We examined the immunolocalization of LHR in cyclic gilt ovaries. The ovaries were obtained from 21 gilts aged 326.0 ± 38.7 days and weighing 154.6 ± 15.7 kg. The ovarian tissues were incubated with rabbit anti‐LHR polyclonal antibody. The follicles were categorized as primordial, primary, preantral and antral follicles. Ovarian phase was categorized as either follicular or luteal phases. The immunolocalization of LHR was clearly expressed in primary, preantral and antral follicles. LHR immunostaining was detected in the cytoplasm of granulosa, theca interna and luteal cells. LHR immunostaining was evaluated using imaging software. LHR immunostaining in the theca interna cells in antral follicles was almost twice as intense as that in preantral follicles (65.4% versus 38.3%, < 0.01). LHR immunostaining was higher in the follicular phase than in the luteal phase (58.6% versus 45.2%, < 0.05). In conclusion, the expression of LHR in the theca interna cells of antral follicles in the follicular phase was higher than in the luteal phase. The expression of LHR in all types of the follicles indicates that LHR may impact follicular development from the primary follicle stage onwards.  相似文献   

14.
15.
In this study, the expressions of VEGF in dog follicles were detected by immunohistochemistry and the effects of VEGF treatment on the primordial to primary follicle transition and on subsequent follicle progression were examined using a dog ovary organ culture system. The frozen‐thawed canine ovarian follicles within slices of ovarian cortical tissue were cultured for 7 and 14 days in presence or absence of VEGF. After culture, the ovaries were fixed, sectioned, stained and counted for morphologic analysis. The results showed that VEGF was expressed in the theca cells of antral follicles and in the granulosa cells nearest the oocyte in preantral follicle but not in granulosa cells of primordial and primary follicles; however, the VEGF protein was expressed in CL. After in vitro culture, VEGF caused a decrease in the number of primordial follicles and concomitant increase in the number of primary follicles that showed growth initiation and reached the secondary and preantral stages of development after 7 and 14 days. Follicular viability was also improved in the presence of VEGF after 7 and 14 days in culture. In conclusion, treatment with VEGF was found to promote the activation of primordial follicle development that could provide an alternative approach to stimulate early follicle development in dogs.  相似文献   

16.
The aim of this study was to investigate the ovarian follicular development, developmental competence of oocytes, and plasma anti‐Müllerian hormone (AMH) levels of Japanese wild boar crossbred (wild hybrid) gilts, whose litter size is inferior to that of European breeds. Ovary and plasma samples were collected from two different breeds of gilts (wild hybrid and Large White breeds). The ovaries from the wild hybrid gilts had a lower average numbers of secondary follicles and vesicular follicles in ovarian cross‐sections and of good quality oocytes collected from ovarian follicles as compared with those from Large White gilts (< 0.05). The development rate to the blastocyst stage of good quality oocytes after in vitro maturation, fertilization and culture was also lower (< 0.05) in wild hybrid gilts than in Large White gilts. Plasma AMH levels with >0.16 ng/ml were detected in 8.3% of the examined wild hybrid gilts and 33% of the Large White gilts. These results indicate that the low reproductive performance of wild hybrid breed may result in part from low numbers of vesicular follicles and good quality oocytes, and low developmental competence of oocytes. Moreover, plasma AMH levels may support low number of vesicular follicles in ovaries of wild hybrid gilts.  相似文献   

17.
Mammalian ovaries are endowed with a huge number of small oocytes (primordial oocytes) in primordial follicles. A small number of primordial oocytes start to grow, while others remain quiescent. Little is known about the mechanism regulating the activation of primordial oocytes. Recently, we found that primordial follicles in mature cows and prepubertal pigs took longer to initiate growth in xenografts compared with those in neonatal animals. We think that primordial oocytes in adult mammals are different from those in neonatal mammals. In this review, we summarize the results regarding the activation of primordial oocytes in neonatal and adult ovaries of different species and propose a model in which ovaries of neonatal mammals contain a mixed population of both quiescent and activated primordial oocytes, while almost all primordial oocytes are quiescent in adult females. The dormancy of primordial oocytes may be required to reserve the non-growing oocyte pool for the long reproductive life in mammals. FOXO3 is considered one of the molecules responsible for the dormancy of primordial oocytes in adult ovaries. These quiescent primordial oocytes are activated, perhaps by certain mechanisms involving the interaction between stimulatory and inhibitory factors, to enter the growth phase.  相似文献   

18.
The objective was to assess the effect of a short‐term scrotal hyperthermia in dogs on quantitative and qualitative ejaculate parameters, testicular blood flow and testicular and epididymal histology. After a control period, the scrotum of seven normospermic adult beagle dogs was insulated with a self‐made suspensory for 48 h. Nine weeks later, two animals were castrated, while in five animals, scrotal hyperthermia was repeated. Dogs were castrated either 10 or 40 days thereafter. In each phase of scrotal insulation, average scrotal surface temperature increased by 3.0°C. Semen was collected twice weekly throughout the experiment. Total sperm count did not change after the first hyperthermia, but it slightly decreased after the second (p < 0.05). Profiles of sperm morphology and velocity parameters (CASA) rather indicated subtle physiological variations in sperm quality than effects of a local heat stress. Chromatin stability of ejaculated spermatozoa as indicated by SCSA remained constant throughout the experiment. Perfusion characteristics of the gonads, that is, systolic peak velocity, pulsatility and resistance index at the marginal location of the testicular artery, did not change due to hyperthermia (p > 0.05). Histological examination of excised testes and epididymides for apoptotic (TUNEL and activated caspase‐3) and proliferating cells (Ki‐67 antigen) indicated only marginal effects of scrotal insulation on tissue morphology. In conclusion, a mild short‐term scrotal hyperthermia in dogs does not cause substantial changes in sperm quantity and quality. In contrast to other species, canine testes and epididymides may have a higher competence to compensate such thermal stress.  相似文献   

19.
Very small follicles (<3.0 mm diameter) are over‐represented on the surface of ovaries of non‐cycling pigs, and the oocytes collected from these follicles generally have reduced developmental competence in vitro. This study examined the effect of follicle size on the nuclear maturation (n = 608), the potential of parthenogenetic activation (n = 243) and the cyclic AMP (cAMP) content of pre‐pubertal porcine oocytes (n = 480). In addition, the influence of follicle size on steroid hormone synthesis was analysed. Cumulus oocyte complexes (COCs) flushed from small (2.5–4.0 mm) or large (4.5–6.0 mm) ovarian follicles were cultured for 0, 28 and 46 h. After 46 h of IVM, a greater proportion of oocytes from 4.5‐ to 6.0‐mm follicles reach metaphase II (MII) compared with those from follicles with 2.5–4.0 mm of diameter (96.1 vs 77.0%, respectively; p < 0.001). Parthenogenetic activation of oocytes from large follicles produced higher developmental rates than oocytes from large follicles (p < 0.05). At 28 h, the IVM medium with oocytes from large follicles contained significantly more 17ß‐oestradiol (E2) than the medium with oocytes from small follicles (5.55 vs 3.45 ng/ml, respectively; p < 0.05) and at 46 h, the medium with oocytes from small follicles contained significantly more progesterone (P4) than the medium with oocytes from large follicles (276.7 vs 108.2 ng/ml, respectively, p < 0.05). Porcine oocytes from large follicles have higher nuclear and cytoplasmic maturation capacities, but the differences did not appear to be cAMP‐mediated. Our findings also suggest that COCs from small follicles undergo more intensive luteinization than COCs from large follicles. The results show that oocytes from follicles with a diameter greater than 4.0 mm are more suitable for in vitro studies.  相似文献   

20.
For investigating the effects of physiologically relevant heat shock, buffalo oocytes/embryos were cultured at 38.5°C (control) or were exposed to 39.5°C (Group II) or 40.5°C (Group III) for 2 h once every day throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC). Percentage of oocytes that developed to 8‐cell, 16‐cell or blastocyst stage was lower (p < 0.05) and the number of apoptotic nuclei was higher (p < 0.05) for Group III > Group II > controls. At both 8–16‐cell and blastocyst stages, relative mRNA abundance of stress‐related genes HSP 70.1 and HSP 70.2 and pro‐apoptotic genes CASPASE‐3, BID and BAX was higher (p < 0.05) in Groups III and II than that in controls with the exception of stress‐related gene HSF1. Expression level of anti‐apoptotic genes BCL‐XL and MCL‐1 was also higher (p < 0.05) in Groups III and II than that in controls at both 8–16‐cell and blastocyst stages. Among the genes related to embryonic development, at 8–16‐cell stage, the expression level of GDF9 was higher (p < 0.05) in Group III than that in controls, whereas that of GLUT1, ZAR1 and BMP15 was not significantly different among the three groups. At the blastocyst stage, relative mRNA abundance of GLUT1 and GDF9 was higher (p < 0.05) in Group II than that in controls, whereas that of ZAR‐1 and BMP15 was not affected. The results of this study demonstrate that exposure of buffalo oocytes and embryos to elevated temperatures for duration of time that is physiologically relevant severely compromises their developmental competence, increases apoptosis and affects stress‐, apoptosis‐ and development‐related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号