首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using target and reference fattened steer populations, the performance of genotype imputation using lower‐density marker panels in Japanese Black cattle was evaluated. Population imputation was performed using BEAGLE software. Genotype information for approximately 40 000 single nucleotide polymorphism (SNP) markers by Illumina BovineSNP50 BeadChip was available, and imputation accuracy was assessed based on the average concordance rates of the genotypes, varying equally spaced SNP densities, and the number of individuals in the reference population. Two additional statistics were also calculated as indicators of imputation performance. The concordance rates tended to be lower for SNPs with greater minor allele frequencies, or those located near the ends of the chromosomes. Longer autosomes yielded greater imputation accuracies than shorter ones. When SNPs were selected based on linkage disequilibrium information, relative imputation accuracy was slightly improved. When 3000 and 10 000 equally spaced SNPs were used, the imputation accuracies were greater than 90% and approximately 97%, respectively. These results indicate that combining genotyping using a lower‐density SNP chip with genotype imputation based on a population of individuals genotyped using a higher‐density SNP chip is a cost‐effective and valid approach for genomic prediction.  相似文献   

2.
A major obstacle in applying genomic selection (GS) to uniquely adapted local breeds in less-developed countries has been the cost of genotyping at high densities of single-nucleotide polymorphisms (SNP). Cost reduction can be achieved by imputing genotypes from lower to higher densities. Locally adapted breeds tend to be admixed and exhibit a high degree of genomic heterogeneity thus necessitating the optimization of SNP selection for downstream imputation. The aim of this study was to quantify the achievable imputation accuracy for a sample of 1,135 South African (SA) Drakensberger cattle using several custom-derived lower-density panels varying in both SNP density and how the SNP were selected. From a pool of 120,608 genotyped SNP, subsets of SNP were chosen (1) at random, (2) with even genomic dispersion, (3) by maximizing the mean minor allele frequency (MAF), (4) using a combined score of MAF and linkage disequilibrium (LD), (5) using a partitioning-around-medoids (PAM) algorithm, and finally (6) using a hierarchical LD-based clustering algorithm. Imputation accuracy to higher density improved as SNP density increased; animal-wise imputation accuracy defined as the within-animal correlation between the imputed and actual alleles ranged from 0.625 to 0.990 when 2,500 randomly selected SNP were chosen vs. a range of 0.918 to 0.999 when 50,000 randomly selected SNP were used. At a panel density of 10,000 SNP, the mean (standard deviation) animal-wise allele concordance rate was 0.976 (0.018) vs. 0.982 (0.014) when the worst (i.e., random) as opposed to the best (i.e., combination of MAF and LD) SNP selection strategy was employed. A difference of 0.071 units was observed between the mean correlation-based accuracy of imputed SNP categorized as low (0.01 < MAF ≤ 0.1) vs. high MAF (0.4 < MAF ≤ 0.5). Greater mean imputation accuracy was achieved for SNP located on autosomal extremes when these regions were populated with more SNP. The presented results suggested that genotype imputation can be a practical cost-saving strategy for indigenous breeds such as the SA Drakensberger. Based on the results, a genotyping panel consisting of ~10,000 SNP selected based on a combination of MAF and LD would suffice in achieving a <3% imputation error rate for a breed characterized by genomic admixture on the condition that these SNP are selected based on breed-specific selection criteria.  相似文献   

3.
The influence of genotype imputation using low‐density single nucleotide polymorphism (SNP) marker subsets on the genomic relationship matrix (G matrix), genetic variance explained, and genomic prediction (GP) was investigated for carcass weight and marbling score in Japanese Black fattened steers, using genotype data of approximately 40,000 SNPs. Genotypes were imputed using equally spaced SNP subsets of different densities. Two different linear models were used. The first (model 1) incorporated one G matrix, while the second (model 2) used two different G matrices constructed using the selected and remaining SNPs. When using model 1, the estimated additive genetic variance was always larger when using all SNPs obtained via genotype imputation than when using only equally spaced SNP subsets. The correlations between the genomic estimated breeding values obtained using genotype imputation with at least 3,000 SNPs and those using all available SNPs without imputation were higher than 0.99 for both traits. While additive genetic variance was likely to be partitioned with model 2, it did not enhance the accuracy of GP compared with model 1. These results indicate that genotype imputation using an equally spaced low‐density panel of an appropriate size can be used to produce a cost‐effective, valid GP.  相似文献   

4.
This study investigated the effect of including Nordic Holsteins in the reference population on the imputation accuracy and prediction accuracy for Chinese Holsteins. The data used in this study include 85 Chinese Holstein bulls genotyped with both 54K chip and 777K (HD) chip, 2862 Chinese cows genotyped with 54K chip, 510 Nordic Holstein bulls genotyped with HD chip, and 4398 Nordic Holstein bulls genotyped with 54K chip and with deregressed proofs for five milk production traits. Based on these data, the accuracy of imputation from 54K to HD marker data and the accuracy of genomic predictions in Chinese Holstein were assessed. The allele correct rate increased around 2.7 and 1.7% in imputation from the 54K to the HD marker data for Chinese Holstein bulls and cows, respectively, when the Nordic HD‐genotyped bulls were included in the reference data for imputation. However, the prediction accuracy was improved slightly when using the marker data imputed based on the combined HD reference data, compared with using the marker data imputed based on the Chinese HD reference data only. On the other hand, when using the combined reference population including 4398 Nordic Holstein bulls, the accuracy of genomic predictions increased 6.5 percentage points together with a reduction of prediction bias. The HD markers did not outperform the 54K markers in genomic prediction based on the present data. The results indicate that for Chinese Holsteins, it is necessary to genotype more individuals with 54K chip to increase reference population rather than increasing marker density.  相似文献   

5.
The genetic identification of the population of origin of individuals, including animals, has several practical applications in forensics, evolution, conservation genetics, breeding and authentication of animal products. Commercial high‐density single nucleotide polymorphism (SNP) genotyping tools that have been recently developed in many species provide information from a large number of polymorphic sites that can be used to identify population‐/breed‐informative markers. In this study, starting from Illumina BovineSNP50 v1 BeadChip array genotyping data available from 3711 cattle of four breeds (2091 Italian Holstein, 738 Italian Brown, 475 Italian Simmental and 407 Marchigiana), principal component analysis (PCA) and random forests (RFs) were combined to identify informative SNP panels useful for cattle breed identification. From a PCA preselected list of 580 SNPs, RFs were computed using ranking methods (Mean Decrease in the Gini Index and Mean Accuracy Decrease) to identify the most informative 48 and 96 SNPs for breed assignment. The out‐of‐bag (OOB) error rate for both ranking methods and SNP densities ranged from 0.0 to 0.1% in the reference population. Application of this approach in a test population (10% of individuals pre‐extracted from the whole data set) achieved 100% of correct assignment with both classifiers. Linkage disequilibrium between selected SNPs was relevant (r2 > 0.6) only in few pairs of markers indicating that most of the selected SNPs captured different fractions of variance. Several informative SNPs were in genes/QTL regions that affect or are associated with phenotypes or production traits that might differentiate the investigated breeds. The combination of PCA and RF to perform SNP selection and breed assignment can be easily implemented and is able to identify subsets of informative SNPs useful for population assignment starting from a large number of markers derived by high‐throughput genotyping platforms.  相似文献   

6.
Significance testing for genome‐wide association study (GWAS) with increasing SNP density up to whole‐genome sequence data (WGS) is not straightforward, because of strong LD between SNP and population stratification. Therefore, the objective of this study was to investigate genomic control and different significance testing procedures using data from a commercial pig breeding scheme. A GWAS was performed in GCTA with data of 4,964 Large White pigs using medium density, high density or imputed whole‐genome sequence data, fitting a genomic relationship matrix based on a leave‐one–chromosome‐out approach to account for population structure. Subsequently, genomic inflation factors were assessed on whole‐genome level and the chromosome level. To establish a significance threshold, permutation testing, Bonferroni corrections using either the total number of SNPs or the number of independent chromosome fragments, and false discovery rates (FDR) using either the Benjamini–Hochberg procedure or the Benjamini and Yekutieli procedure were evaluated. We found that genomic inflation factors did not differ between different density genotypes but do differ between chromosomes. Also, the leave‐one‐chromosome‐out approach for GWAS or using the pedigree relationships did not account appropriately for population stratification and gave strong genomic inflation. Regarding different procedures for significance testing, when the aim is to find QTL regions that are associated with a trait of interest, we recommend applying the FDR following the Benjamini and Yekutieli approach to establish a significance threshold that is adjusted for multiple testing. When the aim is to pinpoint a specific mutation, the more conservative Bonferroni correction based on the total number of SNPs is more appropriate, till an appropriate method is established to adjust for the number of independent tests.  相似文献   

7.
We present here the first genome‐wide characterization of linkage disequilibrium (LD) in the French Blonde d'Aquitaine (BLA) breed, a well‐muscled breed renowned for producing high‐yielding beef carcasses. To assess the pattern and extent of LD, we used a sample of 30 unrelated bulls and 36 923 single nucleotide polymorphisms (SNPs) covering all cattle autosomes. The squared correlation of the alleles at two loci (r2) was used as a measure of LD. The analysis of adjacent marker pairs revealed that the level of LD decreases rapidly with physical distance between SNPs. Overall mean r2 was 0.205 (±0.262). Strong LD (r2 > 0.8) and useful LD (measured as r> 0.2) were observed within genomic regions of up to 720 and 724 kb, respectively. We analysed the genetic structure of the BLA population and found stratification. The observed genetic sub‐structuring is consistent with the known recent demographic history that occurred during BLA breed formation. Our results indicate that LD mapping of phenotypic traits in the BLA population is feasible; however, because of this sub‐structuring, special care is needed to reduce the likelihood of false‐positive associations between marker loci and traits of interest.  相似文献   

8.
A population-based imputation procedure was used to predict the most likely genotype of un-typed loci on low density SNP maker panels to improve data integrity before genetic association and selection studies when pedigree information is not available such as in feedlot applications. It is of practical importance to evaluate the accuracy effects of imputed genotypes. In our report, a population consisting of 2246 Angus bulls that were genotyped using both Illumina Bovine3k and Bovin50 BeadChip was used. Several scenarios with varying percentages of missing SNP genotypes under a random missing pattern were simulated. Additionally, several scenarios with varying percentages of animals genotyped using the 3 k and 50 k panels assuming a structured missing pattern were considered. With the random missing scenarios, SNP genotypes on the Bovine50 panel were masked at random until reaching the desired missing percentage. With the structured missing scenarios, all SNP genotypes in the Bovine50 chip were masked, with the exception of those corresponding to the Bovine3 panel. The missing rates considered in this study ranged from 70% to 94% across chromosomes. Population-based imputation software fastPHASE1.2 was used for the separate analysis of each of the 30 pairs of chromosomes in the bovine genome. The results of the imputation of the random-missing SNP genotypes were similar to previous reports and accuracy rates, defined as the percentage of correct prediction of the true missing genotypes, ranging from 68% to 97% were influenced primarily by the proportion of missing genotypes. Moreover, imputation performance using structured-missing-pattern panels was impacted by the amount of individuals in reference population and level of linkage disequilibrium (LD) on each chromosome. In order to further elucidate the potential effect of incorrect imputation on genomic selection, wrongly imputed genotypes were grouped into two groups as a function of the number of incorrectly imputed alleles.  相似文献   

9.
There is an increasing interest in using whole‐genome sequence data in genomic selection breeding programmes. Prediction of breeding values is expected to be more accurate when whole‐genome sequence is used, because the causal mutations are assumed to be in the data. We performed genomic prediction for the number of eggs in white layers using imputed whole‐genome resequence data including ~4.6 million SNPs. The prediction accuracies based on sequence data were compared with the accuracies from the 60 K SNP panel. Predictions were based on genomic best linear unbiased prediction (GBLUP) as well as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy from using different types of variants (synonymous, non‐synonymous and non‐coding SNPs) was evaluated. Genomic prediction using the 60 K SNP panel resulted in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data, there was a small increase (~1%) in prediction accuracy over the 60 K genotypes. With both 60 K SNP panel and sequence data, GBLUP slightly outperformed BayesC in predicting the breeding values. Selection of SNPs more likely to affect the phenotype (i.e. non‐synonymous SNPs) did not improve the accuracy of genomic prediction. The fact that sequence data were based on imputation from a small number of sequenced animals may have limited the potential to improve the prediction accuracy. A small reference population (n = 1004) and possible exclusion of many causal SNPs during quality control can be other possible reasons for limited benefit of sequence data. We expect, however, that the limited improvement is because the 60 K SNP panel was already sufficiently dense to accurately determine the relationships between animals in our data.  相似文献   

10.
Boar reproductive traits are economically important for the pig industry. Here we conducted a genome‐wide association study (GWAS) for 13 reproductive traits measured on 205 F2 boars at day 300 using 60 K single nucleotide polymorphism (SNP) data imputed from a reference panel of 1200 pigs in a White Duroc × Erhualian F2 intercross population. We identified 10 significant loci for seven traits on eight pig chromosomes (SSC). Two loci surpassed the genome‐wide significance level, including one for epididymal weight around 60.25 Mb on SSC7 and one for semen temperature around 43.69 Mb on SSC4. Four of the 10 significant loci that we identified were consistent with previously reported quantitative trait loci for boar reproduction traits. We highlighted several interesting candidate genes at these loci, including APN, TEP1, PARP2, SPINK1 and PDE1C. To evaluate the imputation accuracy, we further genotyped nine GWAS top SNPs using PCR restriction fragment length polymorphism or Sanger sequencing. We found an average of 91.44% of genotype concordance, 95.36% of allelic concordance and 0.85 of r2 correlation between imputed and real genotype data. This indicates that our GWAS mapping results based on imputed SNP data are reliable, providing insights into the genetic basis of boar reproductive traits.  相似文献   

11.
旨在探究低密度液相芯片在生产实践中的实用性,降低育种成本。本试验选用了3 761头约160日龄,110 kg左右健康大白猪,随机抽取100头大白猪,根据10K芯片标记信息,从50K芯片中抽取标记生成10K芯片,作为填充群体。再从剩余群体中,分别随机抽取800、2 000、3 600个个体作为参考群体,使用Beagle 4.1软件对100头填充群体进行基因型填充至50K芯片,重复10次,以基因型一致性和基因型相关系数来评价基因型填充的准确性。结果表明,10K和50K芯片平均连锁不平衡(r2)程度为0.227和0.258,相差不大。最小等位基因频率(MAF)为0.05是基因型填充准确性的拐点,剔除掉MAF<0.05标记后,填充准确性明显升高。填充准确性随参考群体规模增大而上升,参考群由800头扩大到3 600头,填充准确性从0.90提高到0.95,10次重复的标准差也从0.006下降到0.002。对于较小的参考群体规模,染色体基因型填充准确性波动较大,随着参考群体规模增大,每条染色体填充准确性相差不大。本研究结果表明,猪液相芯片从10K填充到50K是可行的,可以大规模用于基因组选择,降低基因组选择育种成本。  相似文献   

12.
Coat color is one of the important factors characterizing breeds for domestic animals. Melanocortin 1 receptor (MC1R) is a representative responsible gene for this phenotype. Two single‐nucleotide polymorphisms (SNPs) in bovine MC1R gene, c.296T > C and c.310G>‐, have been well characterized, but these SNPs are not enough to explain cattle coat color. As far as we know, MC1R genotypes of Kumamoto sub‐breed of Japanese Brown cattle have not been analyzed. In the current study, genotyping for c.296T > C and c.310G>‐ was performed to elucidate the role of MC1R in determining the coat color of this sub‐breed. As a result, most animals were e/e genotype, suggesting the coat color of this sub‐breed is derived from the e allele of MC1R gene. However, we found six animals with E/e genotype, which coat color would be black theoretically. Subsequently, sequence comparison was performed with these animals to identify other polymorphisms affecting coat color, elucidating that these animals possessed the A allele of c.871G > A commonly. c.871G > A was a non‐synonymous mutation in the seventh transmembrane domain, suggesting alteration of the function and/or the structure of MC1R protein. Our data indicated that the A allele of c.871G > A might be a loss‐of‐function mutation.  相似文献   

13.
旨在对几个中国地方猪品种进行群体遗传结构分析,并筛选与中国地方猪产仔数相关的基因组选择信号及候选基因.本研究下载了6个中国地方品种猪共计102头个体的Illumina PorcineSNP60芯片数据,构建了包括19头迪庆藏猪、16头明光小耳猪、16头五指山猪在内的低产仔数组和包括11头姜曲海猪、20头蓝塘猪、20头梅...  相似文献   

14.
The objective of this paper was to investigate, for various scenarios at low and high marker density, the accuracy of imputing genotypes when using a multivariate mixed model framework using information from 2, 4, or 10 surrounding markers. This model predicts genotypes at a locus, using genotypes at nearby loci as correlated traits, and the additive genetic relationship matrix to use information from genotyped relatives. For 2 scenarios this method was compared with the population-based imputation algorithms FastPHASE and Beagle. Accuracies of imputation were obtained with Monte Carlo simulation and predicted with selection index theory, using input from the simulated data. Five different scenarios of missing genotypes were considered: 1) genotypes of some loci are missing due to genotyping errors, 2) juvenile selection candidates are genotyped using a smaller SNP panel, 3) some animals in the pedigree of a breeding population are not genotyped, 4) juvenile selection candidates are not genotyped, and 5) 1 generation of animals in the top of the pedigree are not genotyped. Surrounding marker information did not improve accuracy of imputation when animals whose genotypes were imputed were not genotyped for those surrounding markers. When those animals were genotyped for surrounding markers, results indicated a limited gain when linkage disequilibrium (LD) between SNP was low, but a substantial increase in accuracy when LD between SNP was high. For scenario 1, using 1 vs. 11 SNP, accuracy was respectively 0.75 and 0.81 at low, and 0.75 and 0.93 at high density. For scenario 2, using 1 vs. 11 SNP, accuracy was, respectively, 0.70 and 0.73 at low, and 0.71 and 0.84 at high density. Beagle outperformed the other methods at high SNP density, whereas the multivariate mixed model was clearly superior when SNP density was low and animals where genotyped with a reduced SNP panel. The results showed that extending the univariate gene content method to a multivariate BLUP model with inclusion of surrounding marker information only yields greater imputation accuracy when the animals with imputed loci are at least genotyped for some SNP that are in LD with the SNP to be imputed. The equation derived from selection index theory accurately predicted the accuracy of imputation using the multivariate mixed model framework.  相似文献   

15.
Charolais cattle are one of the most important breeds for meat production worldwide; in México, its selection is mainly made by live weight traits. One strategy for mapping important genomic regions that might influence productive traits is the identification of signatures of selection. This type of genomic features contains loci with extended linkage disequilibrium (LD) and homozygosity patterns that are commonly associated with sites of quantitative trait locus (QTL). Therefore, the objective of this study was to identify the signatures of selection in Charolais cattle genotyped with the GeneSeek Genomic Profiler Bovine HD panel consisting of 77 K single nucleotide polymorphisms (SNPs). A total 61,311 SNPs and 819 samples were used for the analysis. Identification of signatures of selection was carried out using the integrated haplotype score (iHS) methodology implemented in the rehh R package. The top ten SNPs with the highest piHS values were located on BTA 4, 5, 6 and 14. By identifying markers in LD with top ten SNPs, the candidate regions defined were mapped to 52.8–59.3 Mb on BTA 4; 67.5–69.3 on BTA 5; 39.5–41.0 Mb on BTA 6; and 26.4–29.6 Mb on BTA 14. The comparison of these candidate regions with the bovine QTLdb effectively confirmed the association (p < 0.05) with QTL related to growth traits and other important productive traits. The genomic regions identified in this study indicated selection for growth traits on the Charolais population via the conservation of haplotypes on various chromosomes. These genomic regions and their associated genes could serve as the basis for haplotype association studies and for the identification of causal genes related to growth traits.  相似文献   

16.
Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium‐density single nucleotide polymorphism (SNP) array. Here, the impact of lower‐density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)‐flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single‐step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree‐based prediction (0.50–0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL‐flanking SNP (0.65–0.72) was similar to the panel with 35K SNP (0.65–0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r2 ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long‐range LD likely contributed to the accurate genomic predictions with the low‐density SNP panels. Population structure analysis supported the hypothesis that long‐range LD in this population may be caused by admixture. Results suggest that lower‐cost, low‐density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs.  相似文献   

17.
An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5–11% more accurate than a pedigree‐based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single‐breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation.  相似文献   

18.
为探究基于A矩阵期望遗传关系最大化(maximizing the expected genetic relationship for matrix A,RELA)、基于A矩阵目标群体遗传方差最小化(minimized the target population genetic variance for matrix A,MCA)、平均亲缘关系最大化(the highest mean kinship coefficients,KIN)、随机选择(random selection,RAN)、共同祖先筛选(common ancestor,CA)等不同参考群筛选方法及参考群规模对基因型填充准确性的影响。本研究使用矮小型黄羽肉鸡作为试验群体,采用鸡600K SNP芯片(Affymetrix Axion HD genotyping array)进行基因分型,测定435羽子代公鸡45、56、70、84、91日龄体重。利用Beagle软件将低密度SNP芯片填充为高密度SNP芯片数据,比较不同参考群筛选方法、参考群规模对基因型填充准确性的影响,以及填充芯片基因组预测准确性。结果表明,使用Beagle 4.0结合系谱信息进行填充效果最佳,其次为Beagle 4.0,而Beagle 5.1填充效果最差。使用MCA方法筛选参考群进行基因型填充准确性最高,使用RAN方法筛选参考群进行基因型填充准确性最低,MCA、RELA、CA 3种方法基因型填充准确性差别较小。相比其他方法,使用MCA方法筛选个体作为参考群将低密度SNP芯片填充至高密度SNP芯片进行基因组选择的预测准确性较高,与真实高密度SNP芯片的基因组预测准确性相差甚微。随着参考群规模增大,基因型填充准确性也随之增加,但增速逐渐下降,最后趋于平缓。综上所述,可以通过参考群筛选方法构建参考群以及控制参考群规模,以保证基因型填充和基因组预测准确性并节省成本,本研究为基因型填充在畜禽遗传育种中的应用提供技术参考。  相似文献   

19.
The metacarpal bone mineral density of 136 healthy feedlot beef cattle of four different breeds (Charolaise, Limousine, Irish Crossbreed and Slovakian Crossbreed) raised and fed on standard conditions was measured by means of a dual‐energy X‐ray absorptiometry technique in an ex vivo study design. The average reference values (mean ± SD) of bone mineral density (BMD) for animals aged between 12 and 22 months and weighing between 236 and 546 kg have been reported and the effects of (i) breed, (ii) gender, (iii) age and (iv) body weight on bone mineral density have been considered. A significant difference (i) among different breeds and (ii) between genders resulted, whereas a high correlation between bone density and (iii) age and (iv) body weight was detected within the same breed and gender, with body weight being the most important factor affecting BMD. A modern new technological insight into the study of bovine bone physio‐pathology is proposed.  相似文献   

20.
This study investigated genomic predictions across Nordic Holstein and Nordic Red using various genomic relationship matrices. Different sources of information, such as consistencies of linkage disequilibrium (LD) phase and marker effects, were used to construct the genomic relationship matrices (G‐matrices) across these two breeds. Single‐trait genomic best linear unbiased prediction (GBLUP) model and two‐trait GBLUP model were used for single‐breed and two‐breed genomic predictions. The data included 5215 Nordic Holstein bulls and 4361 Nordic Red bulls, which was composed of three populations: Danish Red, Swedish Red and Finnish Ayrshire. The bulls were genotyped with 50 000 SNP chip. Using the two‐breed predictions with a joint Nordic Holstein and Nordic Red reference population, accuracies increased slightly for all traits in Nordic Red, but only for some traits in Nordic Holstein. Among the three subpopulations of Nordic Red, accuracies increased more for Danish Red than for Swedish Red and Finnish Ayrshire. This is because closer genetic relationships exist between Danish Red and Nordic Holstein. Among Danish Red, individuals with higher genomic relationship coefficients with Nordic Holstein showed more increased accuracies in the two‐breed predictions. Weighting the two‐breed G‐matrices by LD phase consistencies, marker effects or both did not further improve accuracies of the two‐breed predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号