首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究不同中性洗涤纤维/非纤维性碳水化合物(NDF/NFC)饲粮对泌乳后期奶牛甲烷排放量、营养物质消化率和生产性能的影响,试验选用体重(777.46±27.31)kg、胎次(1.5±0.15)胎、泌乳天数(242.92±15.28)d、产奶量(18.75±0.62)kg/d的奶牛12头,随机分配到3组,每组4头。各组饲粮NDF/NFC分别为2.10(精粗比为42:58)、1.96(精粗比为37:63)、1.52(精粗比为30:70),采用六氟化硫(SF_6)示踪技术测定自然状态下泌乳奶牛甲烷排放量。预试期14 d,正试期9 d。结果表明:饲喂不同NDF/NFC饲粮的泌乳后期奶牛甲烷排放量、甲烷能、单位干物质采食量的甲烷排放量以及单位总能摄入量的甲烷能均有显著差异;随着NDF/NFC降低,奶牛生产性能、饲料转化率和营养物质消化率无显著差异。综上,在不影响奶牛健康和生产性能的前提下,NDF/NFC为1.52的低NDF组饲料能显著降低泌乳后期奶牛瘤胃甲烷排放量。  相似文献   

2.
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.  相似文献   

3.
Improving N utilization in dairy cows and especially reducing N output in excreta is desirable due to global concerns of agricultural contribution of N to environmental pollution, particularly as ammonia. Data from five N balance experiments were used to develop a dynamic model that was evaluated with independent data. Model predictions of feces, urine, and milk outputs were close to observed values. Statistical analysis showed that 96% of mean square prediction error for feces and urine N output predictions was due to random variation. However, the model tends to overpredict milk N output, especially at higher N intake levels. Evaluation of model predictions for independent experimental observations from Agricultural Development Advisory Service at Bridgets (U.K.) showed good agreement between predicted and observed urine N output (95% due to random variation). However, there was a slight underprediction for fecal N output (14% mean square prediction error due to bias) and overprediction of milk N output (22% of mean square prediction error due to bias). The model predictions of N outputs in excreta were sensitive to changes in energy concentration of the diet. Dietary protein degradability had only a small influence on predicted fecal N output. However, the model was sensitive in its predictions of urine N when protein degradability was varied. Application of the model to assess reduction in ammonia emissions from dairy cows showed that increasing the energy concentration could potentially reduce ammonia emissions by up to 25% per cow. Similarly, reducing CP concentration in the diet to about 16% could reduce ammonia production by 20% and lower degradability of CP to match microbial requirement by 19% per cow. The model is a first step toward a mechanistic approach of nutrient modeling, and it is a valuable method for predicting N excretions and estimating N emissions from dairy systems.  相似文献   

4.
Thirty‐four Holstein dry cows and 16 lactating cows were used in balance trials to identify the effects of feeding and animal performance on nitrogen (N), phosphorus (P) and potassium (K) excretion by dairy cows, and to develop prediction models for these excreta. Orchard grass silage, corn silage, alfalfa silage or timothy hay were offered to dry cows. Orchard grass silage or alfalfa silage, and concentrates were offered to lactating cows. In the statistical analysis, the independent variables were bodyweight (kg), dry matter (DM) intake (kg/day), milk yield (for lactating cows only, kg/day), water intake (free water plus water in feed, kg/day), intake (g/day) of N, P and K and dietary contents (% of DM) of crude protein, P and K. The dependent variables were N, P and K excretion (g/day) in feces and urine. In both dry and lactating cows, intake of N, P and K had large effects on corresponding excretion. The results indicated that a decrease in the intake of N, P and K could decrease the corresponding excretion. Further research by path analysis showed that K intake positively affected urinary N excretion in dry cows indirectly, through water intake and urine volume.  相似文献   

5.
This experiment studied the effect of 3 forms of presentation of linseed fatty acids (FA) on methane output using the sulfur hexafluoride tracer technique, total tract digestibility, and performance of dairy cows. Eight multiparous lactating Holstein cows (initial milk yield 23.4 +/- 2.2 kg/d) were assigned to 4 dietary treatments in a replicated 4 x 4 Latin square design: a control diet (C) consisting of corn silage (59%), grass hay (6%), and concentrate (35%) and the same diet with crude linseed (CLS), extruded linseed (ELS), or linseed oil (LSO) at the same FA level (5.7% of dietary DM). Each experimental period lasted 4 wk. All the forms of linseed FA significantly decreased daily CH(4) emissions (P < 0.001) but to different extents (-12% with CLS, -38% with ELS, -64% with LSO) compared with C. The same ranking among diets was observed for CH(4) output expressed as a percentage of energy intake (P < 0.001) or in grams per kilogram of OM intake (P < 0.001). Methane production per unit of digested NDF was similar for C, CLS, and ELS but was less for LSO (138 vs. 68 g/kg of digested NDF, respectively; P < 0.001). Measured as grams per kilogram of milk or fat-corrected milk yield, methane emission was similar for C and CLS and was less for ELS and LSO (P < 0.001), LSO being less than ELS (P < 0.01). Total tract NDF digestibility was significantly less (P < 0.001) for the 3 supplemented diets than for C (-6.8% on average; P < 0.001). Starch digestibility was similar for all diets (mean 93.5%). Compared with C, DMI was not modified with CLS (P > 0.05) but was decreased with ELS and LSO (-3.1 and -5.1 kg/d, respectively; P < 0.001). Milk yield and milk fat content were similar for LSO and ELS but less than for C and CLS (19.9 vs. 22.3 kg/d and 33.8 vs. 43.2 g/kg, on average, respectively; P < 0.01 and P < 0.001). Linseed FA offer a promising dietary means to depress ruminal methanogenesis. The form of presentation of linseed FA greatly influences methane output from dairy cows. The negative effects of linseed on milk production will need to be overcome if it is to be considered as a methane mitigation agent. Optimal conditions for the utilization of linseed FA in ruminant diets need to be determined before recommending its use for the dairy industry.  相似文献   

6.
In a previous paper we have proposed a new concept of a model for the prediction of feed intake by Holstein Friesian dairy cows (Zom et al., 2011). This model predicts feed intake from feed composition and digestibility and the cow's lactation number, stage of lactation and pregnancy. Contrary to many other often used models, this does not include animal performance (milk yield, bodyweight) to predict feed intake. However, BW and MY are highly correlated with DMI. Therefore, the objective of present study was to evaluate the accuracy and robustness of the novel feed intake model and to compare its accuracy and robustness with four other commonly used models for the prediction of feed intake.An evaluation was performed using an independent dataset containing 8974 weekly means of DMI from 348 individual cows observed in 6 feeding experiments including a wide range of diets and management practices was used in this study. Sub-datasets were formed by combining the DMI data by experiment, lactation number, lactation week, and maize silage to grass silage ratios in order to compare the accuracy of the intake models for different feeding practices and groups of cows using mean square prediction error (MSPE) and relative prediction error (RPE) as criteria.The novel model was most accurate as indicated by the MSPEs and RPEs for the whole dataset and the most of the sub-datasets. The results prove that the model of Zom et al. (2011) is able to predict DMI without the use of milk yield or body weight as inputs. It was concluded that novel model was robust and can be applied to various diets and feeding management situations in lactating HF cows.  相似文献   

7.
Alternative approaches to predicting methane emissions from dairy cows   总被引:3,自引:0,他引:3  
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited value where predictions are obtained for nutrient intakes and diet types outside those used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three nonlinear alternatives that were all of modified Mitscherlich (monomolecular) form. Of the linear models tested, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.  相似文献   

8.
High-quality protein roughage is an important feed for productive ruminants. This study examined the effects of strategic feeding of lactating cows with cassava (Manihot esculenta) top silage (CTS) on rumen fermentation, feed intake, milk yield, and quality. Four early lactating crossbred dairy cows (75% Holstein-Friesian and 25% Thai) with body weight (BW) 410?±?30 kg and milk yield 12?±?2 kg/day were randomly allotted in a 4?×?4 Latin square design to four different supplementation levels of CTS namely, 0, 0.75, 1.50, and 2.25 kg/day of dry matter (DM). Strategic supplementation of CTS significantly affected ruminal fermentation end-products, especially increased propionate production, decreased protozoal population and suppressed methane production (P?<?0.05). Increasing the CTS supplementation level substantially enhanced milk yield and the 3.5% FCM from 12.7 to 14.0 kg/day and from 14.6 to 17.2 kg/day (P?<?0.05) for non-supplemented group and for the 2.25 kg/day supplemented group, respectively. We conclude that high-quality protein roughage significantly enhances rumen fermentation end-products, milk yield, and quality in dairy cows.  相似文献   

9.
The objective of this study was to evaluate the effect of substituting brown rice grain for corn grain in total mixed ration (TMR) silage containing food by‐products on the milk production, whole‐tract nutrient digestibility and nitrogen balance in dairy cows. Six multiparous Holstein cows were used in a crossover design with two dietary treatments: a diet containing 30.9% steam‐flaked corn (corn TMR) or 30.9% steam‐flaked brown rice (rice TMR) with wet soybean curd residue and wet soy sauce cake. Dietary treatment did not affect the dry matter intake, milk yield and compositions in dairy cows. The dry matter and starch digestibility were higher, and the neutral detergent fiber digestibility was lower for rice TMR than for corn TMR. The urinary nitrogen (N) excretion as a proportion of the N intake was lower for rice TMR than for corn TMR with no dietary effect on N secretion in milk and fecal N excretion. These results indicated that the replacement of corn with brown rice in TMR silage relatively reduced urinary N loss without adverse effects on feed intake and milk production, when food by‐products such as soybean curd residue were included in the TMR silage as dietary crude protein sources.  相似文献   

10.
试验于2011年7月~2012年7月在同一栋牛舍内对20头干奶牛和20头泌乳牛分别进行了四季氨气排放量测定,每个季节根据气象信息所提供的当地气温,分别在季前、季中、季末共选取气温相近的18d,分别对干奶牛(9d)与泌乳牛(9d)进行监测。通过测定不同时间段牛舍内NH3的浓度,把3次实测值进行累加,计算出24h奶牛NH3的排放值。结果表明,四季试验期间干奶牛舍内平均NH3排放量是6.42g/(头·d),四季泌乳牛舍内平均NH、排放量是10.62g/(头·d)。四季温度的变化对奶牛排放NH3有一定的影响。奶牛NH3的排放量与奶牛的采食量、饲料配方和饲料中CP水平有关,一头体重500kg左右的奶牛一年产生约3.6kg的氨气:  相似文献   

11.
We evaluated the effects of replacement of heading stage harvested timothy silage with early‐harvested orchardgrass–perennial ryegrass mixed (OP) silage while maintaining or reducing concentrate input on dry matter intake (DMI), milk production, nutrient digestibility, and N balance in dairy cows. Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design with three dietary treatments: TYL, a diet containing timothy silage where forage‐to‐concentrate ratio (FC) was 50:50; OPL, a diet containing OP silage where FC ratio was 50:50; and OPH, a diet containing OP silage where FC ratio was 60:40. We observed that an equal replacement of timothy with OP silage increased DMI, milk yield, milk protein production, and nutrient digestibility but decreased milk fat content (TYL versus OPL). We observed that replacing timothy with OP silage while reducing concentrate input increased milk fat and protein yield, nutrient digestibility, and feed efficiency and reduced urinary N loss with no effect on DMI or milk fat content (TYL versus OPH). These results show that replacing timothy with OP silage can be a good approach to improve milk production, feed efficiency, and N utilization and reduce concentrate input. However, milk fat depression should be considered when an equal substitution is performed.  相似文献   

12.
Analyses of factors affecting dry matter intake of lactating dairy cows   总被引:1,自引:0,他引:1  
An experiment was conducted to analyze feed, climate and animal factors affecting dry matter intake (DMI) in lactating dairy cows. Sixteen lactating Holstein cows, with parity from 1 to 6, were assigned to a feeding trial for 2 years, comprising 31 lactations. The animals were fed Italian ryegrass silage, oat hay, alfalfa hay, beet pulp and three types of concentrate. The data, pooled and classified by stage of lactation, season of lactation and parity were analyzed by stepwise multiple regression to determine the nature and extent of factors affecting DMI. A total of 45 prediction equations for DMI were derived. Energy‐corrected milk yield or milk yield was selected as the primary factor of DMI in all the equations in which the ratio of contribution (R2) varied from 0.26 to 0.67. The dietary concentration of organic cell wall, crude fiber, crude protein, organic b fraction, forage to concentrate ratio, average ambient temperature and temperature–humidity index were selected as the secondary factors affecting DMI for pooled data, late lactation (251–350 days of lactation), summer (June–August), spring (March–May), ≥4th lactation, autumn (September–November) and 3rd lactation, respectively, and improved R2 up to 0.77. Except for an impact of bodyweight in several equations, feed and climatic factors significantly improved prediction equations effectively for data classified in different ways. To estimate DMI accurately in lactating dairy cows, feed and climatic factors should be considered for specific conditions.  相似文献   

13.
Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin‐rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin‐rich corn silage (AR treatment) in a crossover design. The anthocyanin‐rich corn silage‐based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids‐not‐fat contents in the AR‐treatment cows were lower than in the control cows. The feeding of the anthocyanin‐rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin‐rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin‐rich corn with good nutritional value is needed for practical use as a ruminant feed.  相似文献   

14.
Liquid feed supplements (LFS) have traditionally been used in lick tanks as a source of nonprotein nitrogen and energy for dairy replacement heifers and dry cows. Recent applications of LFS in rations for lactating dairy cows were reviewed along with the corresponding research data available in the scientific literature. Liquid feed supplements offer an alternative delivery vehicle for supplemental fat, undegraded intake protein, and rumen-fermentable carbohydrates in total mixed rations for lactating dairy cows. In general, the experiments reviewed did not show a lactation performance advantage to the dietary addition of animal-fat or animal-protein by-products in liquid compared with dry feed supplements. Lactation performance benefits from the feeding of molasses or sugar were not well-substantiated by the literature data, and controlled research is needed to evaluate this aspect of the use of LFS in diets for lactating dairy cows. University and field trials suggest that sorting of total mixed rations fed to lactating dairy cows can occur. Addition of LFS to total mixed rations to reduce sorting of diet components is a new practice on commercial dairy operations, but controlled research trials evaluating the efficacy of LFS for ameliorating a sorting problem are lacking. Advantages of LFS in convenience and uniformity of ingredient and nutrient delivery can be evaluated relative to cost differences between liquid and dry feed supplements since lactation performance differences between them were minimal.  相似文献   

15.
热应激对干奶期奶牛甲烷排放量的影响   总被引:2,自引:2,他引:0  
试验旨在研究不同程度热应激水平对奶牛甲烷排放量的影响。试验选用4头处于干奶期的经产中国荷斯坦奶牛,采用4×4拉丁方设计,利用环境控制舱检测温湿度指数(THI)在66、72、78和84条件下甲烷的产生量。结果表明,当奶牛处于应激状态时,CO2和CH4排放量均显著下降;单位饲料干物质所产生的甲烷量显著升高。因此,干奶期奶牛在热应激条件下,甲烷排放量显著下降。  相似文献   

16.
Liquid feed supplements (LFS) have traditionally been used in lick tanks as a source of nonprotein nitrogen and energy for dairy replacement heifers and dry cows. Recent applications of LFS in rations for lactating dairy cows were reviewed along with the corresponding research data available in the scientific literature. Liquid feed supplements offer an alternative delivery vehicle for supplemental fat, undegraded intake protein, and rumen-fermentable carbohydrates in total mixed rations for lactating dairy cows. In general, the experiments reviewed did not show a lactation performance advantage to the dietary addition of animal-fat or animal-protein by-products in liquid compared with dry feed supplements. Lactation performance benefits from the feeding of molasses or sugar were not well- substantiated by the literature data, and controlled research is needed to evaluate this aspect of the use of LFS in diets for lactating dairy cows. University and field trials suggest that sorting of total mixed rations fed to lactating dairy cows can occur. Addition of LFS to total mixed rations to reduce sorting of diet components is a new practice on commercial dairy operations, but controlled research trials evaluating the efficacy of LFS for ameliorating a sorting problem are lacking. Advantages of LFS in convenience and uniformity of ingredient and nutrient delivery can be evaluated relative to cost differences between liquid and dry feed supplements since lactation performance differences between them were minimal.  相似文献   

17.
The objective of this experiment was to evaluate the effect of concentrate/milk yield ratios on feed intake, nutrient digestibility, rumen fermentation efficiency, and milk production in dairy cows fed with a basal diet of whole crop rice silage (WCRS). Sixteen crossbred cows (75 % Holstein-Friesian (HF) and 25 % Thai cows) in mid-lactation were assigned to four dietary treatments in a completely randomized design. Treatments corresponding to four concentrate/milk yield ratios (0, 1:1, 1:2, and 1:3 (kg/kg)) were used. All cows were offered WCRS (with 1.5 % urea and 3 % molasses) ad libitum. Silage and concentrate were fed individually twice a day. Results revealed that dry matter intake (12.8–14.5 kg/day), nutrient digestibility (62.5–68.7 %), and rumen fermentation efficiency were not significantly affected by concentrate supplementation. Milk yield (10.2–11.5 kg/day) and milk composition were similar between cows fed with sole WCRS and those supplemented with concentrate mixture, although milk fat tended to increase in cows fed with sole WCRS. In conclusion, sole WCRS fed to dairy cows without concentrate supplementation resulted in similar feed intake, nutrient digestibility, rumen fermentation, and milk production as compared to those supplemented with concentrate in lactating dairy cows. These results suggest that in tropical areas where rice crop is surplus, WCRS could sustain reasonable levels of milk production among dairy cows with little or no concentrate supplementation provided that urea and molasses are included in the silage.  相似文献   

18.
Abstract

Enteric methane (CH4) emissions were measured from six lactating dairy cows using the sulfur hexafluoride tracer technique. Three diets with different proportions of highly digestible grass silage/concentrates were fed: 500/500, 700/300, or 900/100 g kg–1 dry matter (DM). The average daily CH4 emissions were 282, 300, and 321 g animal–1, respectively and the methane conversion factor (Y m ) from gross energy (GE) ranged from 0.051 to 0.056. However, the statistical power of the study was weak and the differences between diets were not significant (p=0.149 and p=0.293, respectively). A linear regression analysis showed a trend (p=0.08) toward higher enteric CH4 emissions with higher proportion of high quality grass silage in the diet. A definite conclusion is not possible and further studies are needed as a base for concrete advice on how to mitigate enteric CH4 emissions from high yielding dairy cows in Scandinavia.  相似文献   

19.
奶牛饲料原料中霉菌毒素广泛存在,并严重地威胁着奶牛健康,影响着奶牛生产性能的发挥。本试验选择年龄、胎次、产奶量、泌乳天数接近的荷斯坦奶牛90头,随机分成两组考察奶牛专用霉菌毒素吸附剂对乳牛生产性能的影响。在饲喂等量的基础日粮上,对照组额外添加20g/(d·头)精料补充料,试验组添加霉菌毒素吸附剂——普乐菲特20g/(d·头),其他饲养管理方式不变。该试验预饲期7d,试验期77d。结果表明,霉菌毒素吸附剂的添加不影响乳脂、乳蛋白,但对提高产奶量以及降低原料奶中体细胞数(P0.05)有明显的效果。本研究表明,日粮添加霉菌毒素吸附剂可有效提高原料奶质量,提高牧场整体经济效益。  相似文献   

20.
奶牛饲料原料中霉菌毒素广泛存在,并严重威胁着奶牛健康,影响奶牛生产性能的发挥.选择年龄、胎次、产奶量、泌乳天数接近的荷斯坦奶牛90头,随机分成两组,考察奶牛专用霉菌毒素吸附剂对乳牛生产性能的影响.在饲喂等量的基础日粮上,对照组额外添加20 g/d·头精料补充料,试验组添加霉菌毒素吸附剂--普乐菲特20g/d头·其他饲养管理方式不变.该试验预饲期7 d,试验期77 d.结果表明,霉菌毒素吸附剂的添加不影响乳脂、乳蛋白,但对提高产奶量及降低原料奶中体细胞数(P<0.05)有明显效果.研究表明,日粮添加霉菌毒素吸附剂可有效提高原料奶质量,提高牧场整体经济效益.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号