首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The beta-agonist clenbuterol in mane and tail hair of horses   总被引:2,自引:0,他引:2  
REASONS FOR PERFORMING STUDY: The beta2-agonist clenbuterol is commonly administered for therapeutic purposes in the horse, but its use an an anabolic agent is illegal. Clenbuterol can be detected in blood and urine for a relatively short period after administration and detection in hair could enhance the analytical range and be used to determine the history of clenbuterol application. HYPOTHESIS: That detection in mane or tail hair is possible over an extended period. METHODS: Four horses received 0.8 microg clenbuterol hydrochloride/kg bwt b.i.d. for 10 days. Four other horses were used as untreated controls. Blood, urine, mane and tail hair samples were taken on Day 0 (before) and 5, 10, 30, 35, 40, 60, 90, 120, 150 and 360 days after start of treatment. Gas chromotography/high resolution mass spectrometry (GC/HRMS) was developed for clenbuterol analysis: limit of detection was 0.2 pg/mg; intra-assay repeatability limit r = 0.06 (confidence level 95%); interassay repeatability limit r = 0.03 (confidence level 95%). Prior to treatment, clenbuterol was absent from all samples analysed. RESULTS: Clenbuterol was detectable as early as Day 5 in tail and mane hair of Segment 1 (0-20 mm from the roots) and was maximal on Day 90. However, as time progressed, shift into lower 20 mm segments was observed. On Day 360, the maximum concentration (up to 21 pg/mg) was located in Segment 13, i.e. 26-28 cm from roots of hair. Clenbuterol was not detectable in blood or urine after Day 30. Mane and tail hair results were very similar. CONCLUSIONS: The study showed that the beta-agonist clenbuterol can be found in mane and tail hair of horses after extended periods. POTENTIAL RELEVANCE: It will be possible to detect clenbuterol in breeding and show horses where anabolic drugs have been used illegally to improve conformation. This method may also be helpful to monitor therapeutic clenbuterol treatment.  相似文献   

2.
Monitoring furosemide in racehorses participating in an EIPH program   总被引:1,自引:0,他引:1  
Analytical procedures were developed to monitor furosemide concentrations in post-race serum and urine samples obtained from horses participating in an exercise-induced pulmonary haemorrhage (EIPH) program. High performance liquid chromatography with ultraviolet light detection proved a reliable, sensitive method for measuring urinary furosemide concentrations up to 12 h after administration of either 150 or 250 mg of the drug to race horses. However, this method was unreliable for determination of serum furosemide concentration. High performance liquid chromatography with fluorescence detection proved a reliable, sensitive method for measuring serum furosemide concentrations in horses administered 250 mg of the diuretic, permitting detection approximately 5–10 ng/ml 6 h after treatment. This method was applied field conditions where furosemide was administered to horses (between 150 and 250 mg intravenously) 4 h prior to the race. Analytical results assisted establishing a threshold concentration of 85 ng/ml for serum furosemide. was found that serum furosemide concentrations are a valid measure of compliance with furosemide administration in the EIPH program.  相似文献   

3.
The distribution of specific gravity values for 2,599 urine samples collected from racing Thoroughbred horses that were known to have received furosemide prior to racing was compared with that for 1,669 urine samples from racing Thoroughbred horses that reportedly had not received furosemide. Values of specific gravity for furosemide-treated horses were significantly lower (P < 0.001) than those for horses that had not received furosemide, and the proportion of horses with urine specific gravity either <1.010 or <1.012 was significantly greater (P < 0.001) among the furosemide-treated horses. These data indicate that evaluation of urine specific gravity would be a useful component of drug testing programs for regulation of furosemide use.  相似文献   

4.
Clenbuterol is a beta2 agonist/antagonist bronchodilator marketed as Ventipulmin and is the only member of this group of drugs approved by the US Food and Drug Administration (FDA) for use in horses. Clenbuterol is a class 3 drug in the Association of Racing Commissioners International (ARCI) classification system; therefore, its identification in postrace samples may lead to sanctions. Recently, the sensitivity of postrace testing for clenbuterol has been substantially increased. The objective of this study was to determine the 'detection times' for clenbuterol after administration of an oral clinical dose (0.8 g/kg, b.i.d.) of Ventipulmin syrup. Five horses received oral clenbuterol (0.8 g/kg, b.i.d.) for 10 days, and urine concentrations of clenbuterol were determined by an enhanced enzyme-linked immunoabsorbent assay (ELISA) test and gas chromatography/mass spectrometric (GC/MS) analysis by two different methods for 30 days after administration. Twenty-four hours after the last administration, urine concentrations of apparent clenbuterol, as measured by ELISA, averaged about 500 ng/mL, dropping to about 1 ng/mL by day 5 posttreatment. However, there was a later transient increase in the mean concentrations of apparent clenbuterol in urine, peaking at 7 ng/mL on day 10 postadministration. The urine samples were also analysed using mass spectral quantification of both the trimethylsilyl (TMS) and methane boronic acid (MBA) derivatives of clenbuterol. Analysis using the TMS method showed that, at 24 h after the last administration, the mean concentration of recovered clenbuterol was about 22 ng/mL. Thereafter, clenbuterol concentrations fell below the limit of detection of the TMS-method by day 5 after administration but became transiently detectable again at day 10, with a mean concentration of about 1 ng/mL. Derivatization with MBA offers significant advantages over TMS for the mass spectral detection of clenbuterol, primarily because MBA derivatization yields a high molecular weight base peak of 243 m/z, which is ideal for quantitative purposes. Therefore, mass spectral analyses of selected urine samples, including the transient peak on day 10, were repeated using MBA derivatization, and comparable results were obtained. The results show that clenbuterol was undetectable in horse urine by day 5 after administration. However, an unexpected secondary peak of clenbuterol was observed at day 10 after administration that averaged approximately 1 ng/mL. Because of this secondary peak, the detection time for clenbuterol (0.8 g/kg, b.i.d. x 10 days) is at least 11 days if the threshold for detection is set at 1 ng/mL.  相似文献   

5.
Clenbuterol (0.8 microgram/kg intravenously) was administered to 10 anesthetized horses with an abnormally low PaO2 (less than 90 mm Hg) despite controlled ventilation with an oxygen-rich gas mixture. Results were compared with those from 10 controls to which no clenbuterol was given and in which conventional methods to increase PaO2 were ongoing. Horses treated with clenbuterol had higher PaO2 values for at least 90 minutes. Clenbuterol was associated with increased heart rate and profuse sweating. Clenbuterol can be administered intravenously to increase the PaO2 of mechanically ventilated horses that have low arterial oxygen tension while under inhalation anesthesia. Further studies are warranted to define more precisely the circumstances under which clenbuterol may be used safely.  相似文献   

6.
Furosemide is frequently used to control or prevent exercise-induced pulmonary hemorrhage in performance horses. The bronchodilating agent clenbuterol is also commonly used as a treatment for inflammatory airway disease in performance horses. Use of both medications is regulated by many racing authorities. The effects of concomitant administration of furosemide and clenbuterol on the pharmacokinetics of clenbuterol have not been well characterized. A study was designed to evaluate the influence of furosemide on serum and urine concentrations of clenbuterol after oral administration of clenbuterol and intravenous administration of furosemide in horses. Results indicated that urinary concentrations of clenbuterol in horses treated concomitantly with furosemide and clenbuterol were increased, whereas serum concentrations of the drug were decreased. These effects persisted during the study period and varied among horses.  相似文献   

7.
The stimulation of pulmonary beta2-adrenergic receptors causes a decrease in vascular resistance. Thus, the present study was carried out to examine whether concomitant administration of clenbuterol-a beta2-adrenergic receptor agonist, to horses premedicated with furosemide would attenuate the exercise-induced pulmonary capillary hypertension to a greater extent than furosemide alone, and in turn, affect the occurrence of exercise-induced pulmonary hemorrhage (EIPH). Experiments were carried out on six healthy, sound, exercise-trained Thoroughbred horses. All horses were studied in the control (no medications), furosemide (250 mg i.v., 4 h pre-exercise)-control, and furosemide (250 mg i.v., 4 h pre-exercise)+clenbuterol (0.8 microg/kg i.v., 11 min pre-exercise) experiments. The sequence of these treatments was randomized for every horse, and 7 days were allowed between them. Using catheter-tip-transducers whose in-vivo signals were referenced at the point of the left shoulder, pulmonary vascular pressures were determined at rest, sub-maximal exercise, and during galloping at 14.2 m/s on a 3.5% uphill grade--a workload that elicited maximal heart rate. In the control study, incremental exercise resulted in progressive significant (P<0.05) increments in heart rate, right atrial as well as pulmonary arterial, capillary and venous (wedge) pressures, and all horses experienced EIPH. Furosemide administration caused a significant (P<0.05) reduction in mean right atrial as well as pulmonary capillary and venous pressures of standing horses. Although exercise in the furosemide-control experiments also caused right atrial and pulmonary vascular pressures to increase significantly (P<0.05), the increment in mean pulmonary capillary and wedge pressures was significantly (P<0.05) attenuated in comparison with the control study, but all horses experienced EIPH. Clenbuterol administration to standing horses premedicated with furosemide caused tachycardia, but significant changes in right atrial or pulmonary vascular pressures were not discerned at rest. During exercise in the furosemide+clenbuterol experiments, heart rate, mean right atrial as well as pulmonary arterial, capillary and wedge pressures increased significantly (P<0.05), but these data were not different from the furosemide-control experiments, and all horses experienced EIPH as well. Thus, it was concluded that clenbuterol administration is ineffective in modifying the pulmonary hemodynamic effects of furosemide in standing or exercising horses. Because the intravascular force exerted onto the blood-gas barrier of horses premedicated with furosemide remained unaffected by clenbuterol administration, it is believed that concomitant clenbuterol administration is unlikely to offer additional benefit to healthy horses experiencing EIPH.  相似文献   

8.
1. We examined the effects of thiamine-hydrochloride (10 mg/kg body weight) and a beta-agonist, clenbuterol (50 microg/kg body weight), on plasma metabolites and hepatic oxygen consumption in female broiler chicks. 2. Clenbuterol, thiamine or both, dissolved in saline, were injected into thigh muscle on 2, 4 and 6 d of age. At 7 d of age blood samples in each treatment group were obtained and breast muscle and liver were weighed; liver slices were used for measurement of oxygen consumption. 3. Body weight gain was reduced by clenbuterol. Thiamine increased breast muscle weight as a proportion of body weight regardless of clenbuterol dose. Clenbuterol increased relative liver weight markedly, especially when chicks received thiamine also. 4. Clenbuterol increased plasma free fatty acid concentration in chicks treated with thiamine. Thiamine decreased plasma triglyceride regardless of clenbuterol dose. Plasma glucose concentration was decreased by both thiamine and clenbuterol. 5. The absolute rate of oxygen consumption in liver slices was greater in the thiamine-treated chicks; clenbuterol did not affect hepatic oxygen consumption. 6. These findings suggest that thiamine-induced energy expenditure results not only from thermogenesis in the liver, but also from increasing energy utilisation for muscle hypertrophy and this vitamin supplementation facilitates the lipolytic effects of the beta-agonist.  相似文献   

9.
Furosemide is the most common diuretic drug used in horses. Furosemide is routinely administered as IV or IM bolus doses 3-4 times a day. Administration PO is often suggested as an alternative, even though documentation of absorption and efficacy in horses is lacking. This study was carried out in a randomized, crossover design and compared 8-hour urine volume among control horses that received placebo, horses that received furosemide at 1 mg/kg PO, and horses that received furosemide at 1 mg/kg IV. Blood samples for analysis of plasma furosemide concentrations, PCV, and total solids were obtained at specific time points from treated horses. Furosemide concentrations were determined by reversed-phase high-performance liquid chromatography with fluorescent detection. Systemic availability of furosemide PO was poor, erratic, and variable among horses. Median systemic bioavailability was 5.4% (25th percentile, 75th percentile: 3.5, 9.6). Horses that received furosemide IV produced 7.4 L (7.1, 7.7) of urine over the 8-hour period. The maximum plasma concentration of 0.03 microg/mL after administration PO was not sufficient to increase urine volume compared with control horses (1.2 L [1.0, 1.4] PO versus 1.2 L [1.0, 1.4] control). There was a mild decrease in urine specific gravity within 1-2 hours after administration of furosemide PO, and urine specific gravity was significantly lower in horses treated with furosemide PO compared with control horses at the 2-hour time point. Systemic availability of furosemide PO was poor and variable. Furosemide at 1 mg/kg PO did not induce diuresis in horses.  相似文献   

10.
Furosemide is a potent loop diuretic used for the prevention of exercise-induced pulmonary hemorrhage in horses. This drug may interfere with the detection of other substances by reducing urinary concentrations, so its use is strictly regulated. The regulation of furosemide in many racing jurisdictions is based on paired limits of urinary SG (<1.010) and serum furosemide concentrations (>100 ng/ml). To validate this regulatory mechanism, a liquid chromatography/mass spectrometry/mass spectrometry method employing a solid-phase extraction procedure and furosemide-d5 as an internal standard was developed. The method was used to determine the pharmacokinetic parameters of furosemide in equine serum samples and its effects on urinary SG after IV administration (250 mg) to 10 horses. Pharmacokinetic analysis showed that serum concentrations of furosemide were well described by a two-compartmental open model. Based on results in this study, it is very unlikely for horses to have serum furosemide concentrations greater than 100 ng/ml or urine SG less than 1.010 at 4 hours after administration (250 mg IV). However, it should be remembered that urine SG is a highly variable measurement in horses, and even without furosemide administration, some horses might naturally have urine SG values less than 1.010.  相似文献   

11.
Dimethyl sulfoxide (DMSO) had been postulated to be a 'masking agent' when used concurrently with therapeutic or prohibited drugs in racing animals. Eight drugs (flunixin, furosemide, caffeine, apomorphine, phenylbutazone, lidocaine, cocaine, and acepromazine maleate) were administered to six horses singly and with concurrent intravenous DMSO. Urine samples were analyzed for the presence of the drugs and/or their metabolites by thin layer chromatography. Direct comparison of thin layer chromatograms of extracts of positive urine samples with and without DMSO verified that DMSO did not interfere with the detection of these drugs.  相似文献   

12.
On four occasions, four horses with heaves and four horses with small airway inflammatory diseases inhaled 0.9% saline based aerosol mixtures with or without lipopolysaccharides (LPS). Prior to the first saline and LPS inhalation, horses were untreated, while three and a half days prior to the third and forth inhalation horses had received 0.8 μ g/kg clenbuterol intravenously twice daily. The messenger RNA (mRNA) expression of tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10 and interferon- γ (IFN- γ) was investigated by RT-PCR, all of which were expressed in the white blood cells of samples collected. Inhalation of LPS only changed the cytokine expression profile of IL-10, IL-4 and TNF-α mRNA which were higher after challenge with LPS. However in those horses that were treated with clenbuterol the LPS-induced IL-10 mRNA expression was shown to be suppressed. Further changes in IL-4 and TNF-α were not significant. Thus the results of this study indicated that clenbuterol can modulate the expression of IL-10 mRNA in peripheral white blood cells in those horses with small airway diseases that have been exposed to LPS. van den Hoven, R., Duvigneau, J.C., Hartl, R.T. and Gemeiner, M., 2006. Clenbuterol affects the expression of messenger RNA for interleukin 10 in peripheral leukocytes from horses challenged intrabronchially with lipopolysaccharides. Veterinary Research Communications, 30(8), 921–928  相似文献   

13.
A study of the effects of intravenous administration of either 150 mg or 250 mg of furosemide to standardbred mares pre-treated with other drugs was undertaken to determine whether a unique pattern of drug elimination into urine and from plasma for each compound occurred. Furosemide significantly reduced the plasma concentrations of codeine compared to control 2-6 h after furosemide administration. In contrast, the plasma concentrations of theophylline, phenylbutazone, pentazocine, guaifenesin and flunixin were not markedly altered by furosemide. In the case of acepromazine, clenbuterol and fentanyl, the data generated were insufficient to state with certainty whether or not furosemide affected the plasma concentrations of these three drugs. A significant reduction was noted in the urinary concentrations of guaifenesin, acepromazine, clenbuterol, phenylbutazone, flunixin, fentanyl and pentazocine within 1-4 h of furosemide administration. The urinary concentrations of theophylline remained reduced as long as 8 h after furosemide injection. Furosemide administration to horses pre-treated with codeine resulted in depression of urinary morphine concentrations 2-4 h and 9-12 h after furosemide injection. A lower furosemide dose (150 mg) produced changes in drug urinary excretion and plasma elimination equivalent to the higher dose (250 mg). It is evident that furosemide affects the urinary and plasma concentrations of other co-administered drugs but not in a predictable fashion, which limits the extrapolation of these results to as yet untested drugs.  相似文献   

14.
The repeatability of endoscopic observations of exercise-induced pulmonary hemorrhage (EIPH) and the efficacy of furosemide as a prophylactic treatment of horses with EIPH were studied in Thoroughbred race horses after consecutive breezes (at or near maximum speed, approx 16 m/s). Of 56 horses examined greater than or equal to 2 times, 21 (38%) had identical EIPH scores, whereas 26 (46%) and 9 (16%) had scores that differed by greater than or equal to 1 grade. In 56 nontreated horses, there was good agreement between 2 consecutive observations (K = 0.59, Z = 4.54, P less than 0.001). Similar comparisons after placebo (saline solution) treatment of 21 horses yielded fair to good agreement, whereas poorer agreement was seen after furosemide treatment of 23 horses. Comparison of average and maximum EIPH scores of 44 horses with a minimum of 4 observations (2 nontreated, 1 saline-treated, and 1 furosemide-treated) indicated that although furosemide did not stop EIPH, it did reduce the EIPH score in 28 (64%) horses.  相似文献   

15.
To evaluate the effects of clenbuterol on cardio-respiratory parameters and blood lactate relation to exercise tolerance, experimental horses performed standardized exercise tests on a high-speed treadmill before and after administration of the drug. Clenbuterol was administered in feed to six healthy Standardbreds at a dose rate of 0.8 micrograms/kg b.wt twice daily for 5.5 days. Each horse was tested twice, without and with a respiratory mask, during two consecutive days. One week elapsed between the baseline tests without drug and the tests with clenbuterol treatment (each horse served as its own control). The results show an unchanged heart rate response to exercise 2 h after the last clenbuterol administration. The blood lactate response and the arterial oxygen tension during exercise did not differ before and after drug treatment. The oxygen uptake as well as pulmonary ventilation relative to the work load performed was essentially unaffected. The arterial pH during exercise was significantly increased (P less than 0.05) following clenbuterol treatment. Plasma levels of clenbuterol were maximal 2 h post-administration with values between 0.45 and 0.75 ng/ml. The plasma half-life of elimination was 10.4 h (+/- 2.25 SD). In conclusion, clenbuterol did not cause any major effects on the cardio-respiratory and blood lactate parameters studied in healthy horses performing submaximal exercise tolerance tests.  相似文献   

16.
Effects of longitudinal exercise training and acute intensive exercise (simulated race test) on immune function have not been reported in horses. Clenbuterol, a beta2-adrenergic agonist, is used to manage inflammatory airway disease in horses. This study investigated the interaction of 8 wk of exercise training with or without 12 wk of clenbuterol administration in horses. Twenty-three untrained standardbred mares (10 +/- 3 yr, Mean +/- SE) were used and divided into four experimental groups. Horses given clenbuterol plus exercise (CLENEX; n = 6) and clenbuterol alone (CLEN; n = 6) received 2.4 microg/kg BW of clenbuterol twice daily (in an average volume of 20 mL) on a schedule of 5 d on and 2 d off for 12 wk. The CLENEX group was also aerobically trained 3 d/wk. Mares given exercise alone (EX; n = 5) were aerobically trained for 3 d/wk, and the control group (CON; n = 6) remained sedentary. Both EX and CON horses were administered similar volumes (approximately 20 mL) of molasses twice daily. A simulated race test (SRT) resulted in an elevation in lymphocyte number postexercise (P < 0.05). There was no significant difference after acute exercise in either monocyte or granulocyte number. Acute exercise resulted in a decrease (P < 0.05) in the percentage of CD4+ and an increase (P < 0.05) in the percentage of CD8+ cells. The SRT resulted in a decreased lymphoproliferative response to pokeweed mitogen (P < 0.05). A SRT had no effect on antibody production in response to equine influenza vaccine. The EX group demonstrated greater cortisol concentrations at rest and at all other time points postexercise after completing the training regimen compared with CLENEX horses (P < 0.05). Preexercise (SRT) peripheral blood monocyte number was lower in CLENEX horses than in other treatment groups (P < 0.05). Clenbuterol and exercise training did not significantly affect post-SRT changes in leukocyte numbers. Exercise training resulted in a decrease (P < 0.05) in the percentage of CD8+ cells post-SRT compared with other groups, but the percentage of CD4+ cells was not altered by either clenbuterol or exercise conditioning. Lymphocyte proliferative response was not affected by clenbuterol or exercise treatment. Horses demonstrated responses to bouts of acute exercise as noted with other species, namely humans and rodents.  相似文献   

17.
OBJECTIVE: To determine concentrations of dexamethasone in serum and urine of horses treated repeatedly with a topically administered ophthalmic dexamethasone preparation. ANIMALS: 4 clinically normal horses (2 mares, 2 geldings). PROCEDURE: 0.1% dexamethasone ophthalmic ointment was administered to the left eye of each horse every 5 to 9 hours for 8 consecutive days, yielding an estimated cumulative dexamethasone dose of 6.4 microg/kg of body weight. Serum and urine samples were obtained before the first dexamethasone treatment, on days 4 and 8 of treatment, and 24, 48, and 96 hours after cessation of treatment. To detect small concentrations of dexamethasone, serum and urine samples were analyzed by use of a competitive enzyme immunoassay. RESULTS: During the period of continued topical treatment, serum dexamethasone concentrations increased to between 0.10 and 0.49 ng/ml, then decreased below the limit of detection (0.06 ng/ml) within 24 hours after cessation of treatment. Dexamethasone also was detected in urine samples at concentrations of up to 0.98 ng/ml. CONCLUSIONS: Repeated topical administration of dexamethasone ophthalmic ointment generated low, but detectable glucocorticoid concentrations in serum and urine. CLINICAL RELEVANCE: Because treatment of performance horses with dexamethasone is prohibited for most types of competitions and because enhanced glucocorticoid detection methods may result in positive test results, owners and trainers may wish to reconsider entering horses in competitions during periods of treatment with ophthalmic dexamethasone preparations.  相似文献   

18.
The pharmacokinetics and residues of clenbuterol in veal calves.   总被引:4,自引:0,他引:4  
Seven female Brown Swiss calves were used to study the pharmacokinetics of clenbuterol after an effective anabolic dosage of 5 micrograms/kg of BW was given twice daily for 3 wk. Analyses of clenbuterol concentrations in different tissues was done by enzyme immunoassay (EIA). Tissue samples were taken from three calves on the last day of administration and from two more after 3.5 or 14 d of clenbuterol withdrawal. The rate of clenbuterol elimination was dependent on time and tissue. Clenbuterol concentrations in the lung dropped from a mean of 76 ng/g to a level of less than .08 ng/g after 14 d, whereas in the liver the clenbuterol concentrations decreased from 46 ng/g to .6 ng/g within 14 d of withdrawal. Highest levels were always found in the eye: 118 ng/g, 57.5 ng/g, and 15.1 ng/g after 0, 3.5, and 14 d of withdrawal, respectively. These data reveal that different compartments contribute to the elimination of clenbuterol; therefore, concentrations in urine do not follow first order kinetics. An initial rapid decline in the concentration of clenbuterol in urine with a half-life of 10 h is followed by a slower elimination with a half-life of about 2.5 d. Treatments using the anabolic dose of 5 micrograms/kg of BW require longer withdrawal times than the therapeutic dose (.8 micrograms/kg BW).  相似文献   

19.
β-激动剂克伦特罗在猪肝脏和肌肉组织中的残留   总被引:8,自引:0,他引:8  
本文报道用高效液相色谱法检测β 肾上腺素能激动剂(克伦特罗Clenbuterol)在猪肝脏和背最长肌中的残留量。在肥育猪日粮中添加3mg/kg克伦特罗,试验期30天,停药0、1、2、3、4天屠宰取肝脏和肌肉样。组织经匀浆浓缩提取,色谱条件为:CLC ODS色谱柱;以20mmol/LKH2PO4+30μmol/LEDTA(pH3.9)乙腈=8218(V/V)为流动相;紫外检测波长为243nm。结果表明,克伦特罗最低检测限为2ng/g。停药当天(0天)肝脏和肌肉组织残留量分别为208.5ng/g和10.0ng/g。停药后残留量迅速下降,肌肉在停药后第2天即检测不出,而肝脏要到第4天才检测不出。  相似文献   

20.
克喘素对猪肉品质的影响   总被引:2,自引:0,他引:2  
试验选用雅南猪30头,长雅猪33头,总群体共63头,研究了不同剂量克喘素对肉质的影响。结果:在总群体及两品种中处理猪的肉色显著变浅,系水力和pH值下降,有偏向PSE肉的趋势,且剂量越高越明显,长雅猪比雅南猪明显;处理组的眼肌粗蛋白含量明显增加,腰大肌的粗脂肪含量显著减少;眼肌的大理石纹评分、粗脂肪以及干物质含量存在极显著的品种与剂量间的互作效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号