首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Every year, multiple outbreaks of salmonellosis in humans are linked to contact with mail‐order chicks and ducks. The objective of this study was to describe the temporal changes in the prevalence of serovars, genotypes and antimicrobial resistance (AMR) phenotypes of non‐typhoidal Salmonella (NTS) recovered from shipped boxes of mail‐order hatchling poultry in the United States during 2013 to 2015. In each year, a sample of feed stores belonging to a single national chain participated in the study. The store employees submitted swabs or hatchling pads from hatchling boxes and shipment tracking information of the arriving boxes to the investigators. NTS was cultured from the samples and isolates were sent to the National Veterinary Services Laboratories (Ames, IA) for serotyping, pulsed‐field gel electrophoresis (PFGE) and AMR phenotyping. The PFGE patterns of Salmonella serovars isolated from hatchling boxes were compared with those from human outbreaks of salmonellosis linked to live poultry contact. The box‐level prevalence of NTS was significantly higher in 2015 compared to 2014. Also, the population of Salmonella serovars recovered in 2015 was more diverse and substantially different from those recovered in the previous two years. Of PFGE patterns recovered from hatchling boxes, seven distinct patterns in 2015, three in 2014 and four in 2013 were indistinguishable from the PFGE patterns of human outbreaks‐associated strains in the respective years. Importantly, a significant positive correlation was found between the box‐level prevalence of PFGE patterns and the number of human illnesses associated with the same patterns. Also, the proportion of multidrug‐resistant isolates was higher in 2014 and 2015 compared to that in 2013. The results demonstrate that shipments of mail‐order hatchling poultry are frequently contaminated with Salmonella genotypes indistinguishable from human outbreaks‐associated strains each year, and control efforts at hatchery level are likely to have an important public health impact.  相似文献   

2.
Outbreaks of human salmonellosis associated with live poultry contact have been reported since 1955. Multiple Salmonella serotypes have been associated with these outbreaks, and specific outbreak strains have been repeatedly linked to single hatcheries over multiple years. During 2009, four multistate outbreaks of human Salmonella infections associated with direct and indirect exposure to live poultry purchased from mail-order hatcheries and agricultural feed stores were identified, resulting in 165 culture-confirmed cases in 30 states. This report describes the epidemiologic, environmental and laboratory investigations conducted by state and local health departments, state departments of agriculture, the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), National Poultry Improvement Plan (NPIP) and National Veterinary Services Laboratories (NVSL), and the Centers for Disease Control and Prevention (CDC). Case-patients were identified through PulseNet, the national molecular subtyping network for foodborne disease surveillance, and interviewed using the CDC standard live poultry contact questionnaire that asks about poultry-related exposures during the 7 days before illness onset. These outbreaks highlight the need to focus efforts on strategies to decrease and prevent human illness associated with live poultry contact through comprehensive interventions at the mail-order hatchery, agricultural feed store and consumer levels. Additional consumer education and interventions at mail-order hatcheries and venues where live poultry are sold, including agricultural feed stores, are necessary to prevent transmission of Salmonella from poultry to humans.  相似文献   

3.
4.
Human salmonellosis is a major public health problem worldwide. Infections can pass to humans by contact with contaminated substances in the food chain. This study aimed to determine the prevalence and contamination levels of Salmonella isolated from pork, chicken and beef sold in different types of retail stores in Chiang Mai and Lamphun provinces and to investigate the genetic relatedness among Salmonella isolates in food chains in that area. A total of 360 meat samples from supermarkets, mini‐grocery stores and fresh markets were obtained. Salmonella Rissen and S. Weltevreden were found in all meat sample types and in human cases. The overall prevalence of Salmonella in the chicken, pork and beef samples was 34.17%, 32.50% and 3.33%, respectively. Quantitatively, Salmonella contamination was highest in pork (1.24 log10MPN/g), followed by chicken (1.08 log10MPN/g), and beef (0.75 log10MPN/g). The highest frequency of Salmonella contamination was found at the fresh markets (85.71%), whereas the highest quantity of contamination level was from mini‐grocery stores (1.27 log10MPN/g). The rep‐PCR analysis results revealed that some of the Salmonella from meat samples and human cases were identical clones.  相似文献   

5.
Salmonella enterica is a common food‐borne pathogen with occasional multidrug resistance (MDR). Salmonella genomic island (SGI1) is a horizontally transmissible genomic island, containing an MDR gene cluster. All Salmonella serotypes are public health concern, although there is an additional concern associated with those that harbour SGI1. In Iran, there are no data on the presence of SGI1 variants in Salmonella isolates. The present study was conducted to identify MDR‐ and SGI1‐carrying Salmonella strains isolated from various sources and to compare their genetic relatedness between human and animal sources. In total, 242 Salmonella isolates collected from chicken, cattle, and humans from 2008 through 2014 were studied. The isolates were tested for resistance to 14 antimicrobials via the disc diffusion method. They were also tested for the presence of SGI1 variants via PCR, and genetic relatedness was evaluated based on pulsed‐field gel electrophoresis (PFGE). Resistance to at least one antimicrobial agent was observed in 132 (54%) Salmonella isolates (n = 242), while more than 40% of the isolates showed MDR. Based on PCR analysis, eight variants of SGI1, including SGI1, SGI1‐B, SGI1‐C, SGI1‐D, SGI1‐F, SGI1‐I, SGI1‐J and SGI1‐O, were found in both human and animal isolates. Statistical analysis revealed no significant difference in the prevalence of SGI1 variants between human and animal isolates (p > 0.05). Macrorestriction PFGE analysis of the isolates with the same SGI1 variant and resistance patterns revealed genetic relatedness ranging from 70% to 100% among human and animal isolates. According to our review, this is the first documentation of SGI1 in Salmonella isolates in Iran. The presence of similar SGI1 variants in both humans and animals, along with their related PFGE patterns, suggests that food‐producing animals may be a source of MDR Salmonella isolates in Iran.  相似文献   

6.
We investigated Salmonella enterica isolates from human clinical cases of gastroenteritis to determine the distribution of non-typhoidal Salmonella serovars in the human population, and compared them to isolates originating from poultry by serotyping, phage typing, plasmid profiling, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) to evaluate the potential role of poultry in human non-typhoidal salmonellosis in Bangladesh. Nine different serovars were identified among the human isolates of which Salmonella Paratyphi B var Java (S. Java), S. Kentucky, S. Enteritidis, S. Virchow and S. Weltevreden also were commonly isolated from poultry. The poultry isolates belonging to S. Java, S. Kentucky and S. Enteritidis were indistinguishable from human isolates or genetically closely related, based on PFGE profiles and MLST. S. Kentucky clone ST198 and S. Java clone ST43 both well-known cause of human infections were also isolated from poultry.  相似文献   

7.
Reptile‐associated salmonellosis (RAS) occurs when Salmonella is transmitted from a reptile to a human. This study describes the epidemiology of RAS in Minnesota during 1996–2011. All Minnesotans with confirmed Salmonella infections are reported to the Minnesota Department of Health (MDH). Case patients are interviewed about illness characteristics and risk factors, including foods eaten, drinking and recreational water exposures, contact with ill people, and animal contact. Willing RAS case patients can submit stool from the reptile for culture. Serotype and pulsed‐field gel electrophoresis (PFGE) subtype of Salmonella isolates from reptiles and case patients are compared. Of 8389 sporadic (not associated with an outbreak) non‐typhoidal salmonellosis case patients in Minnesotans during 1996–2011, 290 (3.5%) reported reptile exposure. The median age of case patients with reptile exposure was 11 years, 31% were under the age of 5 years and 67% were under the age of 20 years; 50% were female. The median illness duration was 8 days; 23% required hospitalization. The most commonly reported reptile exposures were lizard (47%), snake (20%), turtle (19%) and a combination of reptile types (14%). Eighty‐four per cent of isolates from case patients who reported reptile exposure were Salmonella enterica subspecies I. The three most common serotypes were Typhimurium (15%), Enteritidis (7%) and subspecies IV serotypes (7%). Of 60 reptiles testing positive for Salmonella, 36 (60%) yielded the same Salmonella serotype as the human isolate. Twenty‐six of 27 reptile isolates that were subtyped by PFGE were indistinguishable from the human isolate. Of these, 88% were subspecies I; the most common serotypes were Enteritidis (12%), Typhimurium (8%), and Bareilly (8%). RAS accounts for approximately 3.5% of salmonellosis cases in Minnesota, primarily affecting children. The majority of isolates from case patients and reptiles belonged to Salmonella subspecies I, suggesting that reptiles are a source of human infection with serotypes not traditionally considered to be reptile‐associated.  相似文献   

8.
The prevalence of Salmonella infection was determined in a group of spur‐thighed tortoises (Testudo graeca) seized during two smuggling attempts and in a population of captive Hermann’s tortoises (Testudo hermanni) sheltered in a wildlife rescue centre. Salmonella spp. was isolated in 81 of 220 (36.8%) and in 17 of 67 (25.4%) cloacal swabs collected from the T. graeca and T. hermanni tortoises respectively. Overall, a total of 21 different Salmonella serotypes were found. Some of these serotypes are common to terrestrial chelonians while others have never been reported. All cultured serotypes were non‐typhoidal but nonetheless many of these have been previously reported as source of human outbreaks of reptile‐related salmonellosis. Eighty‐two per cent and 5.3% of the isolates were resistant to two and three anti‐microbial agents respectively. However, the isolates were highly susceptible to the anti‐microbials of choice for the treatment of salmonellosis such as cephalosporins and fluoroquinolones. Our findings confirm that tortoises can be considered a reservoir for Salmonella and that care should be employed when handling and breeding these animals. Tight surveillance should be enforced to avoid illegal importation and prevent the trading of live tortoises, carriers of zoonotic pathogens.  相似文献   

9.
The epidemiology of subclinical salmonellosis in wild birds in a region of high Salmonella prevalence in pigs was studied. Three hundred and seventy‐nine faecal samples from 921 birds trapped in 31 locations nearby pig premises, and 431 samples from 581 birds of 10 natural settings far from pig farms were analysed for the presence of Salmonella spp. Positive samples were serotyped and analysed for antimicrobial resistance (AR). Phage typing and pulsed‐field gel electrophoresis (PFGE) on Salmonella Typhimurium isolates were also carried out. The overall proportion of Salmonella‐positive samples was 1.85% (95% CI = 0.93, 2.77). Salmonella isolation was positively associated with samples collected from birds in the proximity of a pig operation (OR = 16.5; 95% CI = 5.17, 52.65), and from non‐migratory (or short‐distance migration) birds (OR = 7.6; 95% CI = 1.20, 48.04) and negatively related to mostly granivorous birds (OR = 0.4; 95% CI = 0.15, 1.13). Salmonella Typhimurium was the most prevalent serotype and four different XbaI PFGE patterns were observed that matched the four phage types identified (U310, U311, DT164 and DT56). Only 20% of the strains showed multi‐AR. In three farms, a high degree of homogeneity among isolates from different birds was observed. These findings suggested that pig farms may act as amplifiers of this infection among wild birds, and the degree of bird density may have much to do on this transmission. Some of the Salmonella serotypes isolated from bird faeces were of potential zoonotic transmission and associated with AR. Monitoring salmonellosis in wild bird is advised.  相似文献   

10.
In July 2010, a horse from a rural farm (Farm A) in coastal Northern California was diagnosed with Salmonella Oranienburg infection following referral to a veterinary hospital for colic surgery. Environmental sampling to identify potential sources and persistence of Salmonella on the farm was conducted from August 2010 to March 2011. Salmonella was cultured using standard enrichment and selective plating. Pure colonies were confirmed by biochemical analysis, serotyped and compared by pulsed‐field gel electrophoresis (PFGE) analysis. A total of 204 clinical and environmental samples at Farm A were analysed, and Salmonella spp. was isolated from six of eight (75%) horses, an asymptomatic pet dog, two of seven (28.6%) water samples from horse troughs, nine of 20 (45%) manure storage pile composites, 16 of 71 (22.5%) wild turkey faeces and four of 39 (10.3%) soil samples from the family's edible home garden. Well water and garden vegetable samples and horse faecal samples from a neighbouring ranch were negative. S. Oranienburg with a PFGE pattern indistinguishable from the horse clinical strain was found in all positive sample types on Farm A. The investigation illustrates the potential for widespread dissemination of Salmonella in a farm environment following equine infections. We speculate that a recent surge in the wild turkey population on the property could have introduced S. Oranienburg into the herd, although we cannot rule out the possibility wild turkeys were exposed on the farm or to other potential sources of Salmonella. Findings from the investigation indicated that raw horse manure applied as fertilizer was the most likely source of garden soil contamination. Viable S. Oranienburg persisted in garden soil for an estimated 210 days, which exceeds the 120‐day standard between application and harvest currently required by the National Organic Program. The study underscores the need to educate the public about potential food safety hazards associated with using raw animal manure to fertilize edible home gardens.  相似文献   

11.
Antibacterial drug resistance among 219 salmonella isolates recovered during 1974 from poultry and poultry environments at the various production stages of broiler chickens in three integrated Ontario companies are recorded. All isolates were susceptible to ampicillin, trimethroprim-sulfamethoxazole complex, furazolidone, cephaloridine and amoxicillin. A relative increase in resistance to tetracycline and streptomycin with an accompanying decrease in resistance to triple sulfa compound was recorded when compared to a previous investigation of avian salmonella isolates in Ontario. The percentage and patterns of antimicrobial resistance were comparable at the various stages of production. Resistance to tetracycline and streptomycin was the most common pattern found among both Salmonella typhimurium and other serotypes. A notably high prevalence of resistance was found among Salmonella enteritidis isolates including some isolates with R factors for chloramphenicol resistance. This latter finding is of particular concern because of the high prevalence of this serotype in poultry and in human salmonellosis.  相似文献   

12.
Wild animals are involved in zoonotic disease transmission cycles. These are generally complex and poorly understood, especially among animals adapted to life in human ecosystems. Raccoons are reservoirs and effective carriers for infectious agents such as Salmonella throughout different environments and contribute to the transference of resistance genes. This study examined the presence of circulating Salmonella sp. in a population of raccoons in a tropical urban environment and evaluated resistance to antibiotics commonly used to treat salmonellosis. A total of 97 raccoons of different ages and sex were included in this study. 49% (38–60 CI) of the faecal samples were positive for Salmonella spp. The study identified 15 circulating serovars with the most prevalent being S. Hartford (7/15), S. Typhimurium (4/15) and S. Bovismorbificans (4/15). These serovars correspond to the serovars detected in humans with clinical symptoms in Costa Rica. 9.5% of the Salmonella strains recovered demonstrated ciprofloxacin resistance, and 7.1% showed resistance to nalidixic acid. This study provides evidence of multiple Salmonella serovars circulating in a population of urban raccoons in Costa Rica. Furthermore, the study confirms the existence of antimicrobial resistance to two antibiotics used to treat human salmonellosis. The findings emphasize the role of the raccoon as a reservoir of Salmonella in the Greater Metropolitan Area of Costa Rica (GAM) and stress the need for active monitoring of the presence and possible spread in antibiotic resistance due to this peri‐domestic carnivore.  相似文献   

13.
The backyard chicken (BYC) movement in the USA has increased human contact with poultry and subsequently, human contact with the pathogen Salmonella. However, to date, there have been few studies assessing prevalence of Salmonella in backyard flocks, despite the known public health risk this zoonotic bacterium poses. The objective of this study was to characterize human‐BYC interactions and assess the prevalence of Salmonella among BYC flocks. We interviewed 50 BYC owners using a structured questionnaire to determine flock and household characteristics that facilitate contact with BYC and that may be associated with Salmonella in the BYC environment. Composite faecal material, cloacal swabs and dust samples from 53 flocks housed on 50 residential properties in the Greater Boston, Massachusetts area were tested for Salmonella using standard culture techniques and confirmed using Matrix‐Assisted Laser Desorption/Ionization‐Time of Flight Mass Spectrometer. Microbroth dilution and whole genome sequencing were used to determine phenotypic and genotypic resistance profiles, respectively, and sequence results were used to determine multilocus sequencing type. No owners self‐reported a diagnosis of salmonellosis in the household. Over 75% of a subset of owners reported that they and their children consider BYC pets. This perception is evident in how owners reported interacting with their birds. Salmonella enterica subspecies enterica serotype Kentucky ST152 (serogroup C)—a strain not commonly associated with human infection—was confirmed in one flock, or 2% of tested flocks, and demonstrated resistance to tetracycline and streptomycin. We detected Salmonella at low prevalence in BYC. Further study of the health effects of exposure to zoonotic gastrointestinal pathogens such as Salmonella among families with BYC is warranted.  相似文献   

14.
The role of amphibians as Salmonella reservoirs has not been as well studied as in reptiles, where the literature is abundant. Recent outbreaks of salmonellosis associated with exotic pet frogs have occurred in United States. Frog farming and wild frog harvesting have increased the international trade in these species. This necessitates a better understanding of the risk of salmonellosis transmission from amphibians to humans. We explored the presence of Salmonella in amphibians (frogs and toads) in Thailand, where farmed and wild frogs as well as toads are present. These live animals are easily found in the local markets and are used as food. Exportation of frog meat from Thailand is common. During March–June 2014, ninety‐seven frogs were collected from several habitats, including frog farms, urban areas and protected natural areas. The collected amphibians were tested for the presence of Salmonella. The overall prevalence of Salmonella was 69.07% (90.00% in farm animals, 0% in urban area animals and 44.83% in protected area animals). Eight serovars of Salmonella were isolated: subsp. diarizonae ser. 50:k:z, Hvittingfoss, Muenchen, Newport, Stanley, Thompson, Panama and Wandsworth. Six of the identified serovars, Hvittingfoss, Newport, Panama, Stanley, Thompson and Wandsworth, have been detected in humans in Thailand. According to our results, amphibians are reservoirs of Salmonella and can be a public health concern when used as a source of protein for humans.  相似文献   

15.
Zoonotic Salmonella infections cause approximately 130 000 illnesses annually in the United States. Of 72.9 million US households owning at least one pet, five million own small mammals; 3000 hedgehogs were documented by USDA in USDA‐licensed breeding facilities and pet stores in 2012. State health department collaborators and PulseNet, the national bacterial subtyping network, identified human infections of a Salmonella Typhimurium outbreak strain, which were investigated by CDC, USDA‐APHIS and state public and animal health officials. A case was defined as an illness in a person infected with the outbreak strain identified between 1 December 2011 and 3 June 2013. Investigators collected information on patient exposures, cultured animal and environmental specimens for Salmonella, and conducted traceback investigations of USDA‐licensed hedgehog facilities. There were 26 cases in 12 states. Illness onset dates ranged from 26 December 2011 to 8 April 2013. The median patient age was 15 years (range = <1–91 years); 58% were female. Among 23 persons with available information, 8 (35%) were hospitalized and one outbreak strainassociated death was reported. Of 25 patients with available information, 20 (80%) reported pet hedgehog contact in the week before illness onset. The outbreak strain was isolated from animal and environmental samples collected from three ill persons’ homes in three states. Hedgehogs were purchased in geographically distant states from USDA‐licensed breeders (10/17, 59%); a USDA‐licensed pet store (1/17, 6%); unlicensed or unknown status breeders (3/17, 18%); and private individuals (3/17, 18%). Traceback investigations of USDA‐licensed facilities did not reveal a single source of infection. Public and animal health collaboration linked pet hedgehog contact to human infections of Salmonella Typhimurium, highlighting the importance of a One Health investigative approach to zoonotic salmonellosis outbreaks. More efforts are needed to increase awareness among multiple stakeholders on the risk of illness associated with pet hedgehogs.  相似文献   

16.
Salmonella is an important human pathogen, and production animals as well as water are known potential sources. This study helped provide insight into the epidemiology of Salmonella by comparing Salmonella strains found in humans to those detected in production animals and water in the same geographic area and time frame. Salmonella was found in 55% of broiler, 30% of swine, 13% of dairy, and 10% of beef manure samples and 23% of water samples. At the farm level, Salmonella was found on 93% of broiler, 81% of swine, 32% of beef and 30% of dairy farms. Salmonella strains of importance to public health were found in all sources tested; however, they appeared to be more common in the broilers. A number of the farms in this study were mixed farms, in that they had more than one production animal species on the farm. At both the sample and farm levels, beef‐only farms had a significantly lower Salmonella prevalence (5% and 7%, respectively) than beef farms with additional production animal species (e.g. poultry) (12% and 42%, respectively) (P ≤ 0.05). Additionally, a number of mixed farms had more than one commodity sampled for this study and similar Salmonella strains by phage type and PFGE were found in the poultry and the other sampled commodity on the farm. This information can help inform the evidence base needed to help target interventions and modify best practices in production agriculture.  相似文献   

17.
Analysis of long‐term anti‐microbial resistance (AMR) data is useful to understand source and transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory and 1864 non‐clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti‐microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) and Salmonella Montevideo (SM) were the most common serovars in both humans and cattle. Multinomial logistic regression showed ST and SN from cattle had greater probability of resistance to multiple classes of anti‐microbials than ST and SN from humans (P < 0.0001). While these findings could be consistent with the belief that cattle are a source of resistant ST and SN for people, occurrence of profiles unique to cattle and not observed in temporally related human isolates indicates these profiles are circulating in cattle only. We used various measures to assess AMR diversity, conditional on the weighting of rare versus abundant profiles. AMR profile richness was greater in the common serovars from humans, although both source data sets were dominated by relatively few profiles. The greater profile richness in human Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non‐clinical cattle Salmonella, and this could be due to anti‐microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans and cattle, the expected and observed number of profiles was different, suggesting Salmonella and associated resistance from humans and cattle may not be wholly derived from a common population.  相似文献   

18.
Salmonella enterica is a zoonotic pathogen which can readily pass from animal to man through the consumption of contaminated food. The prevalence of Salmonella enterica associated with poultry and poultry meat products has been well-documented and this prevalence has both public health and economic implications. The estimated total cost for nontyphoidal Salmonella is in excess of 14 billion dollars/year in the United States alone. Almost 41,930 cases of nontyphoidal foodborne salmonellosis are confirmed annually with an estimated total number of 1 million cases of foodborne salmonellosis not reported. The emergence of antimicrobial resistant Salmonella recovered from meat products has heightened concerns regarding antimicrobial use in food animal production. This review will cover the history and taxonmy of Salmonella enterica, Salmonella in poultry and poultry products, colonization factors, transmission, detection and characterization, antibiotics, antimicrobial resistance, mechanisms of resistance in Salmonella by class, transmission of antimicrobial resistance, and the global implications of antimicrobial resistance.  相似文献   

19.
Feral pigs are one of the most abundant free‐roaming ungulates in the United States, yet their role in the ecology and transmission of foodborne pathogens is poorly understood. Our objectives were to estimate the prevalence of Salmonella shedding among feral pigs throughout Texas, to identify risk factors for infection, and to characterize the isolates. Faecal samples were collected from feral pigs in Texas from June 2013 through May 2015. Standard bacteriologic culture methods were used to isolate Salmonella from samples, and isolates were characterized via serotyping and anti‐microbial susceptibility testing. The prevalence of faecal Salmonella shedding among sampled pigs was 43.9% (194/442), with positive pigs originating from 50 counties. Pigs sampled during fall and summer were significantly more likely to be shedding Salmonella than pigs sampled during winter. High serovar diversity was evident among the isolates, and many of the detected serovars are leading causes of human salmonellosis. The most common serovars were Montevideo (10.0%), Newport (9.1%), and Give (8.2%). Resistance to anti‐microbial agents was rare. The burgeoning feral pig population in the United States may represent an emerging threat to food safety.  相似文献   

20.
Eastern Shore of Virginia red, round tomatoes contaminated with Salmonella serotype Newport pattern JJPX01.0061 have been a source of several multistate outbreaks within the last 10 years. No source of the contamination has yet been identified. The goal of this study was to evaluate wildlife as a potential source of contamination. Faecal samples from deer, turtles and birds were collected between November 2010 and July 2011 from seventeen locations on the Eastern Shore of Virginia. A total of 262 samples were tested for the presence of Salmonella using an enzyme‐linked immunosorbent assay (ELISA). A total of 23 (8.8%) samples tested positive for Salmonella spp. and were further characterized by serotyping and pulsed‐field gel electrophoresis (PFGE) subtyping. Overall, twelve serotypes were identified, including Salmonella serotype Javiana, another common serotype associated with tomato‐related outbreaks. Only one avian sample collected in July 2011 was determined to be positive for S. Newport pattern 61. This sample was collected from the ground at a site where birds, mostly gulls, were congregating. Although many of the avian samples from this site were dry, the site yielded eleven positive Salmonella samples. This suggests that certain Salmonella serotypes may persist in the environment despite extreme conditions. The recovery of one Newport pattern 61 isolate alone does not yield much information regarding the environmental reservoirs of this pathogen, but when combined with other data including the recovery of several isolates of Javiana from birds, it suggests that birds might be a potential source of Salmonella contamination for tomatoes on the Eastern Shore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号