首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The future implementation of improved and sustainable control strategies for the major equine parasites will be dependent on a greater insight into their basic biology, pathogenicity and epidemiology together with an enhanced ability for accurate diagnosis. This paper will provide a review of the current molecular methods under development for the detection of equine parasites and their application to current scientific questions. In particular, the strongyles are recognised as important pathogens of horses and recent advances made in the study of this parasitic group at the single species level will be addressed. The ribosomal (r)DNA region of the parasite genome has been employed to distinguish between closely related species. Molecular probes designed to this target region were used in combination with PCR technology to allow the identification of individual species within mixed infections. They have been applied to all parasite stages to look at the role of individual species in natural infection, disease and drug resistance. Similar techniques have been developed to detect other equine parasites and these will also be discussed. Further opportunities for employing existing techniques and the need for new diagnostic tools will be highlighted.  相似文献   

2.
Since 1977, >2000 research papers described attempts to detect, identify and/or quantify parasites, or disease organisms carried by ecto-parasites, using DNA-based tests and 148 reviews of the topic were published. Despite this, only a few DNA-based tests for parasitic diseases are routinely available, and most of these are optional tests used occasionally in disease diagnosis. Malaria, trypanosomiasis, toxoplasmosis, leishmaniasis and cryptosporidiosis diagnosis may be assisted by DNA-based testing in some countries, but there are very few cases where the detection of veterinary parasites is assisted by DNA-based tests. The diagnoses of some bacterial (e.g. lyme disease) and viral diseases (e.g. tick borne encephalitis) which are transmitted by ecto-parasites more commonly use DNA-based tests, and research developing tests for these species makes up almost 20% of the literature. Other important uses of DNA-based tests are for epidemiological and risk assessment, quality control for food and water, forensic diagnosis and in parasite biology research. Some DNA-based tests for water-borne parasites, including Cryptosporidium and Giardia, are used in routine checks of water treatment, but forensic and food-testing applications have not been adopted in routine practice. Biological research, including epidemiological research, makes the widest use of DNA-based diagnostics, delivering enhanced understanding of parasites and guidelines for managing parasitic diseases. Despite the limited uptake of DNA-based tests to date, there is little doubt that they offer great potential to not only detect, identify and quantify parasites, but also to provide further information important for the implementation of parasite control strategies. For example, variant sequences within species of parasites and other organisms can be differentiated by tests in a manner similar to genetic testing in medicine or livestock breeding. If an association between DNA sequence and phenotype has been demonstrated, then qualities such as drug resistance, strain divergence, virulence, and origin of isolates could be inferred by DNA-based tests. No such tests are in clinical or commercial use in parasitology and few tests are available for other organisms. Why have DNA-based tests not had a bigger impact in veterinary and human medicine? To explore this question, technological, biological, economic and sociological factors must be considered. Additionally, a realistic expectation of research progress is needed. DNA-based tests could enhance parasite management in many ways, but patience, persistence and dedication will be needed to achieve this goal.  相似文献   

3.
Development of resistance of several important equine parasites to most of the available anthelmintic drug classes has led to a reconsideration of parasite control strategies in many equine establishments. Routine prophylactic treatments based on simple calendar‐based schemes are no longer reliable and veterinary equine clinicians are increasingly seeking advice and guidance on more sustainable approaches to equine parasite control. Most techniques for the detection of equine helminth parasites are based on faecal analysis and very few tests have been developed as diagnostic tests for resistance. Recently, some molecular and in vitro based diagnostic assays have been developed and have shown promise, but none of these are currently available for veterinary practice. Presently, the only reliable method for the detection of anthelmintic resistance is a simple faecal egg count reduction test, and clinicians are urged to perform such tests on a regular basis. The key to managing anthelmintic resistance is maintaining parasite refugia and this concept is discussed in relation to treatment strategies, drug rotations and pasture management. It is concluded that treatment strategies need to change and more reliance should now be placed on surveillance of parasite burdens and regular drug efficacy tests are also recommended to ensure continuing drug efficacy. The present review is based upon discussions held at an equine parasite workshop arranged by the French Equine Veterinary Association (Association Vétérinaire Equine Française, AVEF) in Reims, France, in October 2008.  相似文献   

4.
Vaccination against animal parasites offers an alternative to chemotherapy for the control of losses due to morbidity and mortality. However, only a few vaccines are currently available, and these are based on controlled infections with living parasites. Further advancement in the development of defined vaccines against parasite infections has been hindered by incomplete knowledge of the immunological relationship between the host and the parasite. The advent of monoclonal antibody technology has provided a powerful new tool for the identification and isolation of parasite antigens. Exploitation of this technique in veterinary parasitology has greatly facilitated progress toward the development of vaccines against several animal parasites.  相似文献   

5.
Despite the profound developments in recombinant DNA technology there is only one marketed recombinant vaccine (for human viral hepatitis B). The development of others proceeds with great difficulty. Molecular vaccines against veterinary parasites are at the utmost pole of complexity in the spectrum of potential vaccines since these parasites are complex eukaryotic organisms, often dwelling at mucosal surfaces where anamnestic responses are problematic, where the immunogenicity of the parasite components is poorly understood and where the effector mechanisms of immunity are unresolved. Cloning a "protective" gene is only the first step, and perhaps the easiest, in a long process which will be necessary to develop vaccines against parasites. Additional steps will involve comprehensive analyses of the immunological responses to ensure that vaccine antigens contain the correct epitopes to induce appropriate immune effector mechanisms for parasite elimination and immunological memory and that these responses are not genetically restricted. The great expectations for recombinant vaccinia-based vaccines must be modified substantially in the light of recent evidence indicating immunological and other constraints on this approach. The use of anti-idiotype vaccines is an underexplored opportunity for practical parasite vaccines since they have several potentially important advantages. The need to include T cell antigenic peptides in peptide vaccines to extend the range of genetic responsiveness and to induce anamnestic responses is now clear. New algorithms for the prediction of such sites exist and these can be tested experimentally with synthetic peptides. There are no major technical obstacles to the development of vaccines for parasites which cannot be overcome. However substantial long term basic research is needed over a range of disciplines to achieve this worthwhile objective.  相似文献   

6.
Intestinal nematodes are an important cause of equine disease. Of these parasites, the Cyathostominae are the most important group, both in terms of their prevalence and their pathogenicity. Cyathostomin infections are complex and control is further complicated by ever‐increasing levels of resistance to some of the commonly used anthelmintics. There are no new equine anthelmintics under development, so it is imperative that the efficacy of any currently‐effective drug classes be maintained for as long as possible. It is believed that the proportion of refugia (i.e. the percentage of parasites not exposed to a drug at each treatment) is one of the most crucial factors in determining the rate at which anthelmintic resistance develops. It is important, therefore, that levels of refugia be taken into account when designing nematode control programmes for horses. This can be assisted by knowledge of the local epidemiology of the infection, supplemented by faecal egg count analysis to identify those animals that are making the major contribution to pasture contamination. This type of rational nematode control requires equine veterinary surgeons to get involved in designing and implementing deworming programmes. The advice given must be based on a combination of knowledge of cyathostomin biology and epidemiology as well as an awareness of the parasite population's current drug sensitivity and a sound history of husbandry at the establishment. As anthelmintic resistance will be the major constraint on the future control of cyathostomins, researchers are now actively investigating this area. Studies are underway to develop tests that will enable earlier detection of anthelmintic resistance and an assay that will help identify those horses that require anthelmintic treatments targeted at intestinal wall larvae.  相似文献   

7.
Rapid developments in molecular biology have had an enormous impact on the prospects for the development of vaccines to control the major nematode and trematode infestations of livestock. Vaccine candidates are purified using conventional protein chemistry techniques but the limitations imposed by the scarcity of parasite material provide an insurmountable barrier for commercial vaccine production by this means. The ability to purify mRNA from different parasite life-cycle stages and to prepare cDNA expression libraries from it has proven central to the identification of immunogenic parasite proteins. Potentially, protective parasite antigens can now be produced in recombinant form in a variety of vectors and this represents a key breakthrough on the road to commercial vaccine production. The contribution of molecular biology to this process is discussed using several examples, particularly in vaccine development against the pathogenic abomasal nematode of sheep and goats, Haemonchus contortus, and the liver fluke of sheep and cattle, Fasciola hepatica. The difficulties of producing recombinant proteins in the correct form, with appropriate post-translational modification and conformation, are discussed as well as emerging means of antigen delivery including DNA vaccination. The opportunities offered by genome and expressed sequence tag analyses programmes for antigen targeting are discussed in association with developing microarray and proteomics technologies which offer the prospect of large scale, rapid antigen screening and identification.  相似文献   

8.
Development of resistance to anthelmintic drugs by horse strongyles constitutes a growing threat to equine health because it is unknown when new drug classes can be expected on the market. Consequently, parasite control strategies should attempt to maintain drug efficacy for as long as possible. The proportion of a parasite population that is not exposed to anthelmintic treatment is described as being "in refugia" and although many factors affect the rate at which resistance develops, levels of refugia are considered the most important as these parasites are not selected by treatment and so provide a pool of sensitive genes in the population. Accordingly, treatment should be avoided when pasture refugia are small because such treatments will place significant selection pressure for resistance on worm populations. Given this new paradigm for parasite control, it has become important to identify seasons and circumstances wherein refugia are diminished. Free-living stages of equine strongyles are highly dependent on climatic influences, and this review summarises studies of strongyle development and survival under laboratory and field conditions in Northern (cool) temperate, Southern (warm) temperate and subtropical/tropical climates. In Northern temperate climates, refugia are smallest during the winter. In contrast, refugia are lowest during the summer in warm temperate and subtropical/tropical climates. Although adverse seasonal changes clearly have significant effects on the ability of free living stages of strongyle nematode parasites to survive and develop, available data suggest that climatic influences cannot effectively "clean" pastures from one grazing season to the next.  相似文献   

9.
The majority of attempts to develop commercial vaccines for veterinary helminths have focussed on identifying protein antigens, which could be formulated as protective vaccines. Notable successes have been achieved for some cestode parasites, where recombinant proteins have been developed into highly effective vaccines. Although effective protection can also be obtained using some nematode proteins in their native forms, it has not yet been possible to formulate commercially successful vaccines for other helminth parasites of veterinary significance. Increasing evidence suggests that parasite glycan moieties may provide an alternative source of vaccine antigens, and increased attention is now being given to this class of compounds. In addition to identifying candidate protective antigen(s), an increased research effort is needed to develop appropriate strategies for the formulation and delivery of helminth vaccines.  相似文献   

10.
The interest in novel methods of controlling helminth infections in ruminants is driven primarily by the development of parasite resistance to currently available anthelmintics. While the purpose of anthelmintics is to achieve high efficacy, i.e. >90% reduction of adult and/or larval parasites in the target host animal, the purpose of novel parasite control methods is rather to assist in maintaining parasite infections below the economic threshold. The ability to maintain parasite levels below the economic threshold is related not only to the efficacy of the control method, but also to the epidemiology of the parasites, climatic conditions, the livestock management program, and integration in a sustainable parasite control program. Because of this fundamental difference, novel parasite control methods need to be evaluated using efficacy criteria different from that adopted for anthelmintics. Although the efficacy of novel parasite control methods may be demonstrated in classic dose-confirmation studies, the impact on livestock production parameters can only be evaluated when tested on-farm. In this paper, the rationale for evaluating novel methods differently from anthelmintics is reviewed, potential performance expectations are presented, and four novel parasite control methods (vaccines, nematophagous fungi, condensed tannins, and immunonutrition) are assessed based on the potential performance criteria.  相似文献   

11.
Despite the availability of many anticoccidial drugs, infections caused by species of Eimeria continue to be a source of significant economic loss to the poultry industry. After two decades in which the use world wide of ionophorous antibiotics gave unparalleled control of coccidiosis, drug resistance is once again tipping the balance in favour of the parasites. The realization that even the most spectacularly successful drugs might, after all, have a finite life if not used conservatively, has focused attention on ways in which the life span of drugs can be prolonged. Many drugs with different (if unknown) modes of action are available, and a variety of shuttle and rotation programmes can be considered. In view of the limitations of chemotherapy, particularly for the rearing of replacement flocks, there is considerable interest in the development of vaccines. Prospects for the introduction of live vaccines based on attenuated parasites are now very good, but the availability in the future of genetically engineered vaccines is more uncertain as little is known about the parasite molecules that stimulate protective immunity and, even if isolated, how they can be administered to the host so that it responds in the immunologically correct manner. Current research on Eimeria spp. in the chicken is broadly representative of that being done on other coccidia. Many lines of investigation are not connected with the development of new drugs or vaccination per se (and therefore have no obvious practical applications), but they are providing new insights into the biological complexity of the organisms and the ways in which they interact with their hosts. It remains possible, however, that a more detailed understanding and analysis of the molecules that are essential in the maintenance of the parasitic life style can be exploited in the future to provide alternative targets for chemical or immunological attack. The research topics considered in this review are arbitrarily grouped as studies on: (1) the basic biology of parasites, including aspects of the life cycle, and structure and function of the apical organelles; (2) the molecular biology of the parasites, including analyses of the number and structure of chromosomes, characterization of DNA sequences, and an account of the viral RNA that has been found in some species of Eimeria; and (3) control of coccidiosis, encompassing first immunity and the development of vaccines, and secondly, chemotherapy.  相似文献   

12.
Most veterinarians continue to recommend anthelmintic treatment programmes for horses that derive from knowledge and concepts more than 40 years old. However, much has changed since these recommendations were first introduced and current approaches routinely fail to provide optimal or even adequate levels of parasite control. There are many reasons for this. Recent studies demonstrate that anthelmintic resistance in equine parasites is highly prevalent and multiple‐drug resistance is common in some countries, but few veterinarians take this into account when making treatment decisions or when recommending rotation of anthelmintics. Furthermore, the current approach of treating all horses at frequent intervals was designed specifically to control the highly pathogenic large strongyle, Strongylus vulgaris. But this parasite is now quite uncommon in managed horses in most of the world. Presently, the cyathostomins (small strongyles) are the principal parasitic pathogens of mature horses. The biology and pathogenesis of cyathostomins and S. vulgaris are very different and therefore require an entirely different approach. Furthermore, it is known that parasites are highly over‐dispersed in hosts, such that a small percentage of hosts harbour most of the parasites. The common practices of recommending the same treatment programme for all horses despite great differences in parasite burdens, recommending prophylactic treatment of all horses without indication of parasitic disease or knowing what species of parasites are infecting the horses, recommending use of drugs without knowledge of their efficacy and failing to perform diagnostic (faecal egg count) surveillance for estimating parasite burdens and determining treatment efficacy, are all incompatible with current standards of veterinary practice. Consequently, it is necessary that attitudes and approaches to parasite control in horses undergo a complete overhaul. This is best achieved by following an evidence‐based approach that takes into account all of these issues and is based on science, not tradition.  相似文献   

13.
PCR-based technology in veterinary parasitology.   总被引:10,自引:0,他引:10  
DNA technology is having a major impact in many areas of veterinary parasitology. In particular, the polymerase chain reaction (PCR) has found broad applicability because its sensitivity permits enzymatic amplification of gene fragments from minute quantities of nucleic acids derived from limited amounts of parasite material. This paper discusses some recent applications of PCR-based methods to parasites and highlights their usefulness or potential for those of veterinary importance. The focus is on PCR tools for the accurate identification of parasites and their genetic characterisation, the diagnosis of infections, the isolation and characterisation of expressed genes, the detection of anthelmintic resistance, and mutation scanning approaches for the high resolution analysis of PCR products.  相似文献   

14.
Recent developments in veterinary vaccinology   总被引:1,自引:0,他引:1  
Advancement in technology and science and our detailed knowledge of immunology, molecular biology, microbiology, and biochemistry among other basic science disciplines have defined new directions for vaccine development strategies. The applicability of genetic engineering and proteomics along with other new technologies have played pivotal roles in introducing novel ideas in vaccinology, and resulted in developing new vaccines and improving the quality of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines and vectored vaccines are rapidly gaining scientific and public acceptance as the new generation of vaccines and are seriously considered as alternatives to current conventional vaccines. The present review focuses on recent advances in veterinary vaccinology and addresses the effects and impact of modern microbiology, immunology, and molecular biology.  相似文献   

15.
The history of veterinary parasitology in France can be divided into three parts. (1) The early period of veterinary education, and development of sections on parasites and parasitic diseases, immediately following the creation of the veterinary colleges in France in 1762-1765 by Cl. Bourgelat until the beginning of the 19th century. This was the period of academics, naturalists and zoologists, with the exception of P. Chabert who, as early as 1782, directed attention to the harmful effects of parasites on animals and tried to control them. (2) Identification and establishment of the field of veterinary parasitology and the development of specific research work, mostly in veterinary colleges, on the biology and systematic control of parasites. This period was dominated by the tremendous amount of work carried out by L.G. Neumann and A. Railliet in every topic of veterinary parasitology. (3) The modern period of veterinary parasitology (before and after World War II). This period is characterized by the increasing development of the most sophisticated techniques in fundamental and applied research to provide efficient cheap and practical means for the diagnosis and control of parasitic diseases in animals.  相似文献   

16.
Despite the extraordinary success in the development of anthelmintics in the latter part of the last century, helminth parasites of domestic ruminants continue to pose the greatest infectious disease problem in grazing livestock systems worldwide. Newly emerged threats to continuing successful livestock production, particularly with small ruminants, are the failure of this chemotherapeutic arsenal due to the widespread development of anthelmintic resistance at a time when the likelihood of new products becoming commercially available seems more remote. Changing public attitudes with regards to animal welfare, food preferences and safety will also significantly impact on the ways in which livestock are managed and their parasites are controlled. Superimposed on this are changes in livestock demographics internationally, in response to evolving trade policies and demands for livestock products. In addition, is the apparently ever-diminishing numbers of veterinary parasitology researchers in both the public and private sectors. Industries, whether being the livestock industries, the public research industries, or the pharmaceutical industries that provide animal health products, must adapt to these changes. In the context of helminth control in ruminant livestock, the mind-set of 'suppression' needs to be replaced by 'management' of parasites to maintain long-term profitable livestock production. Existing effective chemical groups need to be carefully husbanded and non-chemotherapeutic methods of parasite control need to be further researched and adopted, if and when, they become commercially available. This will require veterinary parasitology researchers from both the public and private sectors to work in close co-operation to ensure 'sustainability' - not only of the livestock industries that they service - but also for their very own activities and enterprises.  相似文献   

17.
Molecular biology has contributed to our knowledge and understanding of the structure of Mycobacteriumavium subspecies paratuberculosis and has been particularly useful in determining those components that elicit immune responses in the host or discriminate M. avium paratuberculosis from other closely related environmental mycobacteria. As such, it has made a significant impact in the field of diagnosis, and has been instrumental in the development of specific and sensitive diagnostic tests. The next decade will see exciting new developments in paratuberculosis research as a consequence of substantial advances made in the construction of gene transfer systems in mycobacteria. These will provide opportunities for applying new strategies to determine the genetic basis for pathogenesis and the mechanisms of drug resistance and will offer new prospects for the rational design of efficient vaccines.  相似文献   

18.
The future of veterinary parasitology   总被引:2,自引:0,他引:2  
Current evidence suggests research in veterinary parasitology is in decline despite its importance. This is particularly true in the UK where research funds have been diverted into BSE. Decline in interest in veterinary parasitology is at least in part due to the success of major pharmaceutical companies in producing a range of effective and safe anti-parasitic drugs. Research is needed because of the effects of parasites on animal welfare and the economic costs of parasites. However, there is little information on the actual costs of animal parasites. Another major reason for research is the development of drug resistance in protozoa, helminths and arthropods of veterinary importance. This is a serious problem particularly for sheep and goats in the southern hemisphere. A prioritised list of research requirements is suggested: (i) new drugs; (ii) resistance management; (iii) vaccines; (iv) breeding for resistance; (v) improved diagnostics; (vi) zoonoses; (vii) global warming and parasites. There is a major political challenge to raise the profile of veterinary parasitology and thus the funding essential for its advancement and the continued welfare and productivity of animals.  相似文献   

19.
Horses worldwide are exposed to a complex mixture of intestinal parasitic helminths. When burdens are high, these parasites can seriously compromise health and welfare. Some helminth species have an extremely high prevalence and are difficult to control, not least because there is a limited understanding of their most basic biology. Furthermore, levels of resistance to some of the commonly used anthelmintics are widespread and increasing. The cyathostomins are the most common nematode species affecting equids worldwide. Within this group of parasites are more than 50 different species. Until recent research activities, little was known about the contribution that individual species make to clinical disease, parasite epidemiology and anthelmintic resistance. This review describes some of the recent research advances in the understanding of cyathostomins in these areas. As part of the research effort, molecular tools were developed to facilitate identification of the non-parasitic stages of cyathostomins. These tools have proved invaluable in the investigation of the relative contributions that individual species make to the pathology and epidemiology of mixed infections. At the more applied level, research has also progressed in the development of a diagnostic test that will allow numbers of cyathostomin encysted larvae to be estimated. This test utilises cyathostomin-specific serum antibody responses as markers of infection. As anthelmintic resistance will be the major constraint on parasite control in future, researchers are actively investigating mechanisms of drug resistance and how to improve the detection of resistance in the field. Recent developments in these areas are also outlined.  相似文献   

20.
Cryopreservation is a method of keeping parasites alive in a laboratory. However, this technique may also damage the parasite. Alternatively, parasites may be maintained by in vitro culture. Unfortunately, for Trypanosoma evansi no effective medium that is able to maintain the parasite for more than 4 months has been described. In this study, we examined the effect of purifying trypomastigote through DEAE-cellulose chromatography before and after cryopreservation, by analyzing the pre-patent period, longevity, parasitemia, and count of viable parasites. Our results showed a three-times increase in the concentration of viable trypomastigote in DEAE-purified cryopreserved parasites as compared to non-DEAE-purified cryopreserved parasites. This indicates that DEAE-cellulose chromatography followed by cryopreservation is an effective method for the storage and preservation of T. evansi, with the advantage that the stocked parasites will be ready to use in molecular biology procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号