首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Model assumptions included number of concurrently degrading entities (or pools) and expected distributions of undegraded NDF. Degradation processes modeled included a single pool with ruminal age-constant rates (exponential distribution), a single pool with a ruminal age-dependent rate, two pools with age-constant rates, two pools with age-dependent and age-constant rates, and a continuum of pools with a gamma distribution of age-constant rates. Various sizes of ingestively masticated fragments of bermudagrass hay or corn silage were obtained via wet sieving of esophageal masticate and incubated in vitro with ruminal fluid for 0 h, every 6 h up to 48 h, and every 12 h up to 168 h. Models assuming a single pool of age-constant or age-dependent rates had larger mean residual mean squares (P < 0.05) than did the gamma mixture model or the two-pool models. Degradation rates estimated by the gamma mixture model indicated distribution of rates ranging from near exponential, age-constant distribution to a near normal bell-shaped distribution of age-constant rates for different datasets. Superior fit by the two-pool models in most datasets (83%) indicated that having two resolvable entities of potentially degradable NDF with different degradation rates was causal of a biphasic distribution of lifetimes. Increasing order of age-dependency modeled in the two-pool model improved fit and precision of estimation (standard error of estimate) for the limit parameters of time delay and indigestible NDF. Both the gamma mixture continuum of age-constant rate model and the two-pool, age-dependent models with a discrete time delay provided similar fit to data and flexibility for fitting data with lifetime distributions ranging from simple exponential to sigmodial. The two-pool, age-dependent and gamma-distributed, age-constant models were better in fitting the dominant biphasic lifetime distributions that occurred when the two pools of degrading entities were of similar size and in estimating the discrete time delay when strategic, quality data were available. Having fewer parameters (four), the gamma-distributed, age-constant model was superior when data quality was limited.  相似文献   

2.
The distribution of particles of differing sizes in ruminal, duodenal and fecal samples, the efficiency of particle breakdown and ruminal escape and their relationships to voluntary intake, chewing behavior and extent of digestion of potentially digestible NDF were examined in six heifers (290 kg average BW) with ruminal, duodenal and ileal cannulas. Animals had ad libitum access to corn silage, with or without 100 mg monensin head-1.d-1, in a two-period crossover design. Variations in voluntary intake by individual animals were positively related to size of digesta particles (median retaining aperture, MRA) in the dorsal rumen (P = .07) and rectum (P = .08), but not to MRA of particulate matter from the ventral rumen and duodenum. No significant relationships existed among eating or ruminating activities and distribution of particles of differing sizes in digesta from any of the digestive sites. The MRA of particulate matter in duodenal and rectal digesta were negatively related (P = .08 and P = .10) to extent of digestion of potentially digestible NDF (PDNDF) at these sites. Voluntary intake was related positively to efficiency of ruminative degradation of digesta particles appearing at the duodenum (P = .09) and to duodenal DM digesta flow per opening of the reticulo-omasal orifice (ROO; P = .02), the latter being negatively related to extent of digestion of PDNDF in duodenal digesta (P = .09). These results suggest that animals with higher intake capability are more efficient ruminators and can partially override constraining factors of particle size and byoyancy and thereby achieve a larger amount of DM flowing per opening of the ROO.  相似文献   

3.
A 2(3) factorial arrangement of treatments was used to study main effects and interactions between particle size of prairie hay (chopped vs ground), two levels of feed intake (60 and 90% of ad libitum) and ruminal degradability of protein sources [dry corn gluten feed (DCGF) vs dry distillers grains (DDG)] on ruminal and total tract digestion in eight ruminal- and duodenal-cannulated steers. Steers were fed every 2 h to approach steady-state feeding conditions. Steers fed ground hay diets digested higher (P less than .05) percentages of total digestible organic matter (OM) and neutral detergent fiber (NDF) in the rumen and had lower (P less than .05) nonammonia-nonbacterial N (NANBN) flows to the duodenum than did those fed chopped hay, probably because greater surface area of ground hay allowed more extensive ruminal fermentation. Protein source X intake interactions were noted for ruminal OM and NDF digestion when expressed as percentages of total digestion. At low intakes, steers fed DCGF had higher (P less than .05) percentages of total digestible OM and NDF disappearing in the rumen than did those fed DDG. Steers fed DCGF had lower total N, NANBN and total amino acid (AA) flows at the duodenum than did those fed DDG, indicating that less DCGF protein escaped ruminal degradation. Steers fed DDG had greater (P less than .05) total tract NDF digestion, suggesting that escape protein from DDG may stimulate hindgut fermentation and thereby affect site and extent of nutrient digestion. Regression analysis indicated that extent of ruminal fermentation and efficiency of microbial growth in vivo are associated with ruminal rates of passage within individual animals. When steers were fed at high-intake levels (1.6% of body weight), ruminal dilution rates were not increased (P less than .05) due to forage particle size or level of intake treatments, accounting, in part, for the lack of expected treatment differences in efficiency of bacterial growth and duodenal N flow, and for the low number of interactions between main effects.  相似文献   

4.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

5.
Roughage sources were compared in flaked milo-based diets that contained 35% chopped alfalfa hay (AH, control diet) or with cottonseed hulls (CSH) or chopped wheat straw (WS) replacing half the AH. Latin square experiments were used to measure total tract digestion coefficients, particulate passage rates (rare earths), liquid turnover rates (Co-EDTA), and rumination time in six growing steers (Exp. 1) and in situ digestion of DM and NDF, ruminal pH and ruminal DM distribution in three mature, ruminally cannulated steers (Exp. 2). Rates of passage from Exp. 1 and rates and extents of digestion from Exp. 2 were used to calculate apparent extent of ruminal digestion (AED). In Exp. 1, total tract digestibilities of DM and NDF were lower (P less than .05) by 7 and 22%, respectively, when CSH, but not WS, were included in the diet. Digestibility of cell solubles was not different (P greater than .10) among diets. Inclusion of WS increased (P less than .10) rumination time by 36%, and CSH increased intake (P less than .10) by 17% over the control diet. In Exp. 2, there tended to be (P less than .20) increased in situ digestion of milo and AH in the WS diet. Measures of ruminal pH were similar for all diets. The AED for AH and milo DM and NDF, and the proportion of total tract NDF digestion occurring in the rumen (50, 47 and 62% for control, CSH and WS diets, respectively), were highest (P less than .05) for the WS diet. This resulted in similar total tract digestibilities for the WS and AH diets. The two low-digestibility roughages had different effects at this concentrate level; wheat straw enhanced apparent extent of ruminal digestion for NDF of other ingredients in the mixed diets, but cottonseed hulls did not.  相似文献   

6.
A sequence of eight twice-daily meals, each marked with different rare earth elements, was fed to 24 Spanish goats (BW = 20.6 +/- 1.94 kg) to produce meal-based profiles of rare earth markers within segments of the gastrointestinal digesta on subsequent slaughter. Accumulative mean residence time and time delay of rare earths and segmental and accumulative mean residence times of indigestible NDF (IDF) were estimated for each sampled segment. Diets consisted of ad libitum access to bermudagrass hay with a limit feeding of one of four supplements: 1) minerals (basal, B); 2) B + energy (E); 3) B + CP (CP); or 4) B + E + CP for 84 d. Mean daily intake (g/kg of BW) during the 5 d before slaughter differed (P < 0.05) via diet for DM but not for IDF (8.0 +/- 0.35 g/kg of BW). Larger estimates of cumulative mean residence time for IDF vs. rare earths were suggested to be the consequence of a meal-induced bias in the single measurement of IDF pool size by anatomical site. The rare earth compartment method was considered more reliable than the IDF pool dilution method because it yielded flow estimates based on the flux of eight meal-dosed rare earth markers over 4 d and was independent of anatomical definitions of pool size. Statistically indistinguishable estimates for gastrointestinal mean residence times for IDF and rare earths conform to assumed indelibility for the specifically applied rare earths and indigestibility of IDF. The potentially digestible NDF (PDF):IDF ratio of dietary fragments (0.8) progressively decreased in the following order: caudodorsal reticulorumen (0.390) > crainodorsal reticulorumen (0.357) approximately reticulum (0.354) > mid-dorsal reticulorumen (0.291) approximately ventral reticulorumen (0.286), to that within the omasal folds and in the abomasum (0.259). Such a gradient of progressively aging mixture of plant tissue fragments is consistent with age-dependent flow paths established in the reticulorumen and flowing to the omasum and abomasum. Such heterogeneity of fragment ages within the reticulorumen is also indicated by the superior fit of marker dose site double dagger marker sampling site model assumptions. Additionally, cyclic meal- and rumination-induced variations in escape rate occur. Estimates of mean escape rates over days, needed for the practice of ruminant nutrition, must consider the complex interactions among plant tissues and the dynamics of their ruminal digestion of PDF.  相似文献   

7.
Six ruminally cannulated steers were used to determine the effects of altering dietary concentrates on fiber digestion. Diets contained 30, 60 or 90% of a concentrate based on flaked sorghum grain plus a 50:50 mixture of wheat straw and alfalfa hay. Total tract digestibility of NDF was not altered, but digestibility of potentially digested NDF (PDF) decreased (P less than .05) from 92 to 48% as concentrates increased from 30 to 90% of diet DM. Ruminal passage rate for straw (3.4 and 3.0%/h) and for hay (4.6 and 4.7%/h) was unchanged when concentrate was increased from 30 to 60%, but it decreased by 28 (2.2%/h) and 13% (4.1%/h), respectively (P less than .05), when concentrates were increased to 90%. Passage rate for grain (5.3, 5.1 and 4.4%/h) and fluid (9.3, 10.0 and 8.2%/h) was not influenced by concentrate percentage. Calculated ruminal digestibilities of NDF in individual ingredients did not differ between 30 and 60% concentrates, but they decreased (P less than .05) by 72, 57 and 34% for straw, hay and grain when concentrate was increased to 90%. Because of their relative contribution to total diet NDF, straw, hay and grain accounted for 28, 18 and 54% of the total decrease in estimated fiber digestion. It is concluded that PDF as well as NDF should be evaluated in studies of concentrate effects on fiber digestion, and that dietary concentrate level has more influence on passage rate of low-quality forage than on passage rate of grain or high-quality forage. In 90% concentrate diets, although fiber digestibility was depressed more for forage than for grain, grain accounted for most of the depression in fiber digestion because grain was the primary source of dietary fiber.  相似文献   

8.
Methodology that allows simultaneous measurement of dynamic events affecting NDF digestion in passage from the rumen should improve our understanding of factors influencing intake and digestion. Ideally, particle flow is measured with a marker indelibly attached to or intrinsically part of the feed. If flow measurements are to reflect physiological conditions, marked and unmarked feed must be digested and passed with identical fractional rates. Application of 14C-labeled plant fiber to the study of ruminal dynamics has been slow because of expense and difficulty in producing 14C-labeled plant material. Recently, alfalfa was intrinsically labeled with 14C under field conditions to produce plant material similar in composition to unlabeled material. Carbon-14 specific activity was similar in all particle sizes, and in indigestible and digestible NDF. Greater concentrations of ytterbium (Yb) were associated with smaller vs larger particles. Larger differences in turnover rates among animals than differences attributable to treatments force comparisons of markers to be made within animal or with in vitro systems. The uncertainty about how extrinsic markers respond under various environments resulting from interaction of feed properties and gut function, and the high error inherent in measuring dynamic systems, raise serious questions on the interpretability of results. Advantages of 14C-labeled NDF over other markers include simultaneous measurements of particle breakdown, digestion and passage rates as well as the potential to study microbial attachment, VFA, CO2 and CH4 production and rate of incorporation of labeled metabolites into tissues.  相似文献   

9.
选用12只安装有永久性瘤胃瘘管的1.5岁杂交一代(无角陶赛特×小尾寒羊)肉用羯羊,随机分成3组,研究日粮中不同加工方式(整株、颗粒、草粉)苜蓿干草在瘤胃内的降解及其对肉羊消化代谢的影响。试验结果表明:苜蓿干草经粉碎及颗粒处理后,DM、CP、NDF在瘤胃内的降解率较整株组有显著提高(P<0.05),但ADF降解率未有明显变化(P>0.05)。不同加工方式(整株、颗粒、草粉)苜蓿干草对DM、OM、NDF、ADF表观消化率没有影响(P>0.05),但加工成颗粒及粉料使氮的利用率显著提高(P<0.05)。3种不同加工方式下DM、OM、NDF、ADF表观消化率分别高达71.74%~72.18%、73.67%~74.22%、66.69%~68.48%、45.64%~52.41%。  相似文献   

10.
The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers.  相似文献   

11.
Five crossbred beef cows (Hereford X Angus, 422 kg) with ruminal and duodenal cannulae were used in a Latin square experiment to determine the effects of dietary proportions of fescue and clover hays (0:1, .25: .75, .5:.5, .75:.25 and 1:0) on digestive function. Feed intake was 85% of ad libitum intake of fescue alone (1.03% of body weight). Fescue contained 1.26% nitrogen (N), 71.0% neutral detergent fibre (NDF) and 7.6% acid detergent lignin (ADL), and clover contained 2.43% N 50.0% NDF and 5.8% ADL in DM. Ruminal fluid ammonia-N concentration increased linearly (P less than .05) with declining dietary fescue level. Total concentration of volatile fatty acids in ruminal fluid and duodenal and rectal digesta mean particle size were not affected by fescue level. Ruminal fluid volume and flow rate increased linearly (P less than .05) with increasing dietary fescue, but fluid and particulate digesta passage rates were unchanged. Apparent ruminal organic matter (OM) digestion decreased quadratically (P less than .05) as fescue increased (74.5, 54.3, 49.8, 46.2 and 42.4% for 0, 25, 50, 75 and 100% fescue, respectively). Postruminal OM digestion as a percentage of intake was partially compensatory, increasing linearly (P less than .05) as dietary fescue level rose (2.3, 3.5, 5.1, 8.6 and 11.1% of intake). Thus, total tract OM digestion declined less as fescue replaced clover (76.8, 57.8, 55.0, 54.8 and 53.5%; linear and quadratic, P less than .05) than did apparent ruminal OM disappearance. Changes in ruminal NDF, acid detergent fibre and cellulose digestibilities were similar to those for OM. Microbial growth efficiency increased quadratically (P less than .10) as fescue intake increased. These results indicate that with low feed intake, ruminal and total tract digestion of an all-legume hay diet is greater than that of a grass hay diet. Little or no digestive advantage was achieved by substituting clover for fescue, except in the case of total replacement of fescue with clover, because of concurrent decreases in microbial growth efficiency, microbial N flow to the intestines and OM digestion in the postruminal tract. Negative associative effects in digestion observed between clover and fescue hays in this experiment deserve further study.  相似文献   

12.
Six Holstein heifers (initial BW = 65.2 +/- 1.8 kg) fitted with ruminal cannulas were used in a repeated measures trial to assess the effect of age and forage-to-concentrate ratio on ruminal fermentation end products and in situ degradation kinetics of four plant protein supplements (soybean meal, sunflower meal, peas, and lupin seeds). Alfalfa hay also was incubated in situ to estimate NDF degradation. Three experimental periods were conducted at 13, 27, and 41 wk of age. Heifers were fed one of two diets, 12:88 vs. 30:70 forage-to-concentrate ratio (DM basis), offered as total mixed ration on an ad libitum basis. Intakes of DM, OM, CP, NDF, and ADG were not affected (P > or = 0.105) by diet. The 30:70 diet resulted in faster (P = 0.045) fluid passage rate and decreased (P = 0.015) ammonia N concentration compared with the 12:88 diet, but no differences (P > or = 0.244) were detected in ruminal pH and total VFA concentration between diets. The rate of degradation and the effective degradability of N in protein supplements was greater with the 30:70 diet for peas (P < or = 0.008) and lupin seeds (P < or = 0.02), and in the 12:88 diet for sunflower meal (P < or = 0.06). Degradation of NDF of alfalfa hay was low with both diets (18.5 and 23.7 % for 12:88 and 30:70, respectively); however, the rate and extent of DM and NDF degradation were greater (P < or = 0.016) with the 30:70 diet, suggesting a higher cellulolytic activity. Total VFA concentration and the proportion of propionate increased (P < or = 0.035), and the acetate proportion decreased (P = 0.021) with age. Average pH, ammonia N concentration, and passage rates were not affected (P > or = 0.168) by age. Degradation rate and effective degradability of N of sunflower meal, peas, lupin seeds, and of DM of alfalfa hay increased (P < or = 0.08) with age, but degradation kinetics of NDF of alfalfa hay was not affected (P > or = 0.249). The increase in the rate and extent of N degradation with age would suggest an increase in proteolytic activity, and the changes in the fermentation pattern may reflect an increase in amylolytic activity caused mainly by an increase in the gross intake of nonstructural carbohydrates and by adaptation of ruminal microflora after long exposure to these nutrients.  相似文献   

13.
Four adult wethers (45 kg) with permanent ruminal and abomasal cannulae were used in a repeated measures Latin-square arrangement of treatments to quantitate the effects of diet concentrate level and sodium bicarbonate (NaHCO3) on site and extent of forage fiber digestion in the gastrointestinal tract. Experimental diets consisted of Kentucky-31 tall fescue hay, soybean meal and a semi-purified concentrate mixture in ratios of 95:5:0, 76:4:20, 57:3:40 and 38:2:60; NaHCO3 represented 0 or 7.5% of the concentrate mixture. Ruminal digestion (% of intake) of neutral detergent fiber (NDF) and hemicellulose decreased linearly (P less than .05), whereas acid detergent fiber (ADF) digestion responded in a cubic (P less than .05) fashion to increasing concentrate level; NaHCO3 improved ruminal digestion of NDF (P less than .10) and ADF (P less than .05), but not hemicellulose. Post-ruminal digestion (% of rumen non-degraded) of NDF and ADF tended to increase, whereas hemicellulose digestion responded in a cubic (P less than .05) fashion to increasing concentrate level; NaHCO3 decreased (P less than .05) post-ruminal digestion of all fiber fractions. Total tract digestion of NDF and ADF showed a cubic (P less than .05) response, whereas hemicellulose digestion responded in a quadratic (P less than .05) fashion to increasing concentrate level; NaHCO3 had no effect on total tract digestion of any fiber fraction. Correlations of ruminal hemicellulose digestion with mean pH (r = .33; P = .07) and minimum pH (r = .30; P = .09) were attained in a 24-h feeding cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
孙建平  董宽虎 《草地学报》2016,24(6):1323-1330
为研究不同紫花苜蓿(Medicago sativa L.)品种在牛瘤胃中的降解规律,本试验以10个紫花苜蓿品种为材料,以3头装有永久性瘘管的晋南牛作为试验动物,采用尼龙袋法测定不同紫花苜蓿品种干物质(DM)、粗蛋白质(CP)、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)的瘤胃降解率和降解参数。结果表明:不同紫花苜蓿品种DM,CP,NDF和ADF的降解率随着其在瘤胃内培养时间的延长,均呈升高趋势,但不同品种在同一培养时间段内的降解率存在显著差异;不同紫花苜蓿品种的有效降解率(ED)的差异较大,‘WL-319HQ DM’的ED最高,显著高于‘中苜一号’和‘首领’(P<0.01);‘金皇后’CP的ED显著高于除‘赛迪’之外的其他品种;‘WL-168HQ’、‘中苜一号’NDF的ED显著高于除‘首领’之外的其他品种;‘三得利’、‘皇后’ADF的ED显著高于其他品种(P<0.05)。由此可见,不同紫花苜蓿品种在瘤胃内的降解特性不同。  相似文献   

15.
通过玉米秸发酵试验及半体内法 ,评价了复合产乳酸菌 (植物乳杆菌 保加利亚乳杆菌 粪尿链球菌 嗜酸乳杆菌 )、酶制剂 (纤维素酶 淀粉酶 糖化酶 )、液体发酵剂 (益生菌 )单独或联合应用对玉米秸组成成分及瘤胃有效降解率的影响。结果表明 ,从整个发酵期来看 ,高剂量固体发酵剂组 (每吨秸杆添加复合产乳酸菌 2 0 g 纤维素酶 10 0 g 淀粉酶 30 0 g 糖化酶 30 0 g)、高剂量液体发酵剂组 (每吨秸杆添加益生菌 5 0 0 m L )、中性洗涤纤维 (NDF)含量略低于对照组 (P <0 .0 5 ) ;高剂量的固体发酵剂和液体发酵剂明显提高了玉米秸快速降解的干物质 (DM) (P <0 .0 5 )、NDF成分 (P <0 .0 1) ,显著降低了慢降解的 DM、NDF成分 (P <0 .0 1) ;从有效降解率来看 ,高剂量液体发酵剂组的DM有效降解率明显高于对照组及纤维素酶组 (P <0 .0 5 ) ,NDF有效降解率则比其他各组均有明显提高 (P <0 .0 5 )。  相似文献   

16.
Six ruminally cannulated beef steers were used in a 6 x 6 Latin square experiment with a 3 x 2 factorial arrangement of treatments to evaluate the effects of barley supplementation (BS; 10, 30 or 50% of diet DM) and ruminal buffer (RB; Na sesquicarbonate at 0 or 4% of BS DM) addition to bromegrass hay-based diets on digestion. When early- (boot) and late- (full maturity) havested bromegrass and wheat straw substrates were incubated in situ, no interactions (P greater than .10) involving substrate with dietary BS or RB were observed, indicating that forages differing in fermentability responded similarly to different ruminal environments. Averaged across substrates, RB had no effect with 10% BS and a positive effect with 30% BS, but a negative effect with 50% BS diets (BS x RB, quadratic; P less than .05) for in situ DM and NDF disappearance for 18 and 24 h of incubation and for rate of disappearance of potentially degraded DM and NDF. Intakes of DM and digested DM were greater (P less than .01) for RB diets; however, RB had no effect (P greater than .10) on total tract DM and NDF digestibility. Intake and digestibility of DM increased linearly (P less than .01), whereas NDF digestibility decreased linearly (P less than .01) as BS percentage was increased in the diet. Sixty beef steers (avg initial wt 302 kg) were fed the same dietary treatments in a growth experiment. A numerical improvement in DM intake (P = .20) and ADG (P = .06) was observed when RB was provided with the 50% BS diet. Results of these experiments indicate that RB may moderate negative effects occurring on ruminal fiber digestion when grains are used to supplement forage-based diets; however, improvements in ruminal digestion were not translated effectively to improved animal productivity.  相似文献   

17.
An automatic in vitro gas production technique was evaluated for predicting in vivo fiber (NDF) digestibility and effective first-order digestion rate of potentially digestible NDF (pdNDF) of 15 grass silages. Observed in vivo NDF digestibility of the silages harvested at different stages of maturity during 3 yr was determined by the total fecal collection in sheep fed at the maintenance level of intake. Isolated grass silage NDF was incubated for 72 h in the presence of rumen fluid and buffer to determine the pdNDF digestion kinetics based on cumulative gas production profiles. The digestion kinetic parameters were estimated by a 2-pool Gompertz function. The estimated parameter values were then used in a 2-compartment mechanistic rumen model to predict the in vivo digestibility of pdNDF. A total compartmental mean residence time of 50 h was used in the model, and a further assumption of the distribution of the residence time between the rumen nonescapable and escapable pools in a ratio of 0.4:0.6 was made. To make a distinction between potentially digestible and indigestible NDF, the potential extent of NDF digestion was determined by a 12-d ruminal in situ incubation. The model-predicted in vivo NDF digestibility accurately and precisely (root mean square error = 0.013 units, R(2) = 0.99). Effective first-order digestion rate was estimated from the predicted pdNDF digestibility, and the values were compared with those calculated from the in vivo pdNDF digestibility using the same passage kinetic parameters. The predicted effective first-order digestion rate was strongly correlated with digestion rate estimates derived from in vivo data (root mean square error = 0.006/h, R(2) = 0.86). It can be concluded that a simple first-order digestion rate can be estimated from a complicated gas production kinetic model including 6 parameters. This rate constant can be used in continuous steady-state dynamic mechanistic rumen models predicting the nutrient supply to the host animal.  相似文献   

18.
Three digestion experiments and one growth experiment were conducted to determine site, extent and ruminal rate of forage digestion and rate and efficiency of gain by cattle offered alfalfa haylage supplemented with corn or dry corn gluten feed (CGF). In Exp. 1, eight steers were fed alfalfa haylage-based diets with substitution of corn for 0, 20, 40 or 60% of haylage in a 4 X 4 latin square. Increasing dietary corn substitution increased (P less than .05) OM, NDF and ADF digestion by steers but decreased (P less than .05) rate of in situ alfalfa DM digestion. In Exp. 2, five heifers were fed alfalfa haylage-based diets with increasing dietary levels of CGF in a 5 X 5 latin square. Increasing dietary CGF increased (P less than .05) OM, NDF and ADF digestion by heifers. In Exp. 3 and 4, cattle were fed alfalfa haylage-based diets containing either 20 or 60% corn or CGF. In Exp. 3, supplementation increased (P less than .05) OM and NDF digestion but level X supplement source interaction (P less than .05) occurred, with added CGF increasing OM and NDF digestion more than added corn. In Exp. 4, supplementation improved (P less than .05) DM intake, daily gain and feed efficiency. Dry matter intake and daily gain were greater (P less than .05) for 60% supplementation than for 20% supplementation. Overall, whereas increasing the level of dietary supplement increased (P less than .05) OM, NDF and ADF digestion, only corn addition decreased (P less than .05) rate of in situ alfalfa DM digestion. Daily gains and feed efficiencies were similar in cattle fed either corn or CGF with alfalfa haylage.  相似文献   

19.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

20.
Five Holstein steers (235 kg of BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square design experiment to determine the effects of supplemental fat source on site and extent of nutrient digestion and ruminal fermentation. Treatments were diets based on steam-flaked corn containing no supplemental fat (control) or 4% (DM basis) supplemental fat as tallow, dried full-fat corn germ (corn germ), corn oil, or flax oil. Fat supplementation decreased (P < 0.08) ruminal starch digestion but increased (P < 0.03) small intestinal starch digestion as a percentage of intake. Feeding corn germ decreased (P < 0.09) ruminal starch digestion and increased (P < 0.03) large intestinal starch digestion compared with steers fed corn oil. Large intestinal starch digestion was less (P < 0.04), and ruminal NDF digestion was greater (P < 0.09) for steers fed tallow compared with steers fed other fat sources. Small intestinal (P < 0.08) and total tract NDF digestibilities were greater (P < 0.02) for steers fed corn germ than for those fed corn oil. Feeding tallow increased total ruminal VFA (P < 0.03) and NH(3) (P < 0.07) concentrations compared with steers fed the other fat sources. Feeding corn germ led to a greater (P < 0.02) rate of ruminal liquid outflow compared with corn oil. A diet x hour interaction (P < 0.04) occurred for ruminal pH, with steers fed corn oil having the greatest ruminal pH 18 h after feeding, without differences at other time points. Fat supplementation increased (P < 0.09) ruminal concentrations of Fusobacterium necrophorum. Duodenal flow of C18:3n-3 was greater (P < 0.01) for steers fed flax oil compared with those fed corn oil. Feeding corn germ led to less (P < 0.01) ruminal biohydrogenation of fatty acids compared with corn oil. Steers fed tallow had greater small intestinal digestibility of C14:0 (P < 0.02) and C16:1 (P < 0.04) than steers fed the other fat sources. Fat supplementation decreased (P < 0.06) small intestinal digestibility of C18:0. Feeding corn germ decreased (P < 0.10) small intestinal digestibility of C18:1 compared with corn oil. It appears that source of supplemental fat can affect the site and extent of fatty acid and nutrient digestion in steers fed diets based on steam-flaked corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号