首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 130 毫秒
1.
张爱玲  李斌  韦平 《猪业科学》2004,21(7):13-15
1引言家禽性别控制研究包括性别决定、性别分化、性别鉴定、性别诱导和性别控制等方面。性别决定与分化本质的发现是家禽性别研究的重要基础,对鸡胚性别的早期鉴定是对性腺基因研究的重要内容。鸡的睾丸和卵巢是由共同的原始生殖细胞(primordialgermcellsPGCs)发育而来。种蛋孵化67h(性腺分化期)中肾开始参与性腺的形成。鸡胚发育的开始阶段,约至5d左右,生殖脊还是中性的性腺,此时雄性和雌性的生殖器官在形态上未发生分化。无性阶段之后(5d之后),雄性和雌性性腺逐渐发生分化。至6~7d,雄性性腺开始睾丸的分化,雌性性腺也开始出现卵巢的分…  相似文献   

2.
雌激素受体在鸡上的研究进展   总被引:1,自引:0,他引:1  
雌激素在雌性性分化和繁殖的调节中起着十分关键的作用[1].雌激素首先在脊椎动物的胚胎时期的卵巢中产生.哺乳动物性腺的分化独立于雌激素的产生,试验表明雌激素在其他的脊椎动物的性腺分化中起着关键的作用[2,3].雌激素在鸟类卵巢的分化中起到决定性的作用,胚胎时期的鸡胚胎性腺能够合成类固醇类激素,包括雌二醇,并且雌性性腺比雄性分泌更多的类固醇类激素,外源性雌激素可以使雄性雌性化,而雌激素的对抗物则可以扰乱正常的卵巢的形成,如果给遗传上的雌性注射芳香化酶抑制剂就可以使其雄性化,同时外源性雌激素也可使爬行动物睾丸雌性化.和其他的激素一样,雌激素是以配体介导转录因子方式通过特殊的核受体蛋白发挥其生物作用的.  相似文献   

3.
中国林蛙胚胎发育的研究进展   总被引:1,自引:0,他引:1  
论文对中国林蛙胚胎发育时期的划分、胚胎期的性腺发育和性别分化、环境温度对胚胎发育的影响等研究进行了综述.根据胚胎的外部形态特征和生理特性,中国林蛙早期胚胎发育划分为25个时期.中国林蛙胚胎发育到31期时生殖腺开始性别分化.在15~30 ℃之间,温度越高,雄性比例越大.适量的雌激素可以提高中国林蛙的雌性比例.在7~22 ℃的温度范围内中国林蛙胚胎均能正常发育,温度越高,发育越快,发育历期越短.这些研究结果为中国林蛙的保护及养殖提供了科学依据.  相似文献   

4.
试验旨在研究FOXL2基因对鸡胚性腺分化的影响。本试验分为试验1组、试验2组和空白对照组(鸡胚数量分别为260、100、20枚),试验组通过胚盘下腔注射的方法分别将pLV-FOXL2慢病毒重组质粒、pLV空质粒注入胚胎期第2天的鸡胚,空白对照组不做处理并与试验组一起孵化至出雏,利用CHD1基因遗传性别鉴定的方法对出雏的雏鸡进行性别检测,分析其性腺解剖学、组织学结构变化,并利用免疫组化的方法检测性腺FOXL2和CYP19A1蛋白表达量。结果显示,试验1组遗传性别为公的23只,遗传性别为母的18只,表型性别为公的21只,表型性别为母的18只,其中有2只表型性别不典型,左侧性腺发生变化,朝卵巢结构转变;试验2组遗传性别为公的9只,遗传性别为母的12只,表型性别与遗传性别一致。阳性PCR检测结果显示,试验1组获得阳性个体10个,阳性率为24.4%(10/41);试验2组获得阳性个体8个,阳性率为38.1%(8/21)。性腺解剖学结果显示,阳性pLV-FOXL2雄性鸡胚左侧性腺体积明显大于右侧性腺,表现膨松状态;组织切片结果显示,雄性鸡胚性腺具有典型的卵巢皮质层和髓质层结构;阳性pLV-FOXL2雌性鸡胚性腺的发育无明显变化。免疫组化结果显示,FOXL2和CYP19A1蛋白在试验1组左右侧睾丸中的表达量与空白对照组母鸡卵巢中的表达量相似,显著高于试验2组(P<0.05)。以上结果表明,FOXL2基因可能促进鸡雄性性腺的性反转,在鸡性腺分化和发育过程中发挥着重要的作用。  相似文献   

5.
为开发一种新型高效的鸭胚性别鉴定方法,采集不同品种孵化14~24 d鸭胚尿囊液,包被酶标板,利用间接ELISA法测定鸭胚尿囊液雌二醇含量,进行重复性试验并与市场上现有的试剂盒进行比较,通过雌二醇含量的差异鉴定早期鸭胚性别。结果:雌性胚胎中雌二醇含量高于0.71 ng/mL,雄性胚胎中雌二醇含量低于0.59 ng/mL。研究表明,利用间接ELISA法可准确鉴定14日胚龄之后的胚胎性别,有益于动物福利和降低垂直疾病的传播。  相似文献   

6.
动物的很多生产性能与性别有关,如产蛋或产奶,另外有些遗传疾病也是伴性遗传的。因此,如果能够对动物性别决定的过程了解清楚,进而有效地控制动物的性别,就能更好地利用自然资源。动物早期的性腺发育过程按时间可以分为两步:第一步由基因决定原始性腺发育为睾丸或是卵巢,称之为性别决定;第二步在睾丸和卵巢分泌的不同激素的作用下最终分化为雌性或雄性表现型,称之为性别分化〔1〕。本世纪以来随着分子遗传学、发育生物学及其他学科的发展,使得人们从本质上对性别决定有了一些较为清楚的认识,对性别决定的研究已经从形态学向配子发生和胚胎形…  相似文献   

7.
鸡胚胎性腺发生发育的研究   总被引:2,自引:0,他引:2  
由原始性腺分化为卵巢或睾丸的变化规律是:孵化3.5-5天,迁移入原始性腺内PGCs,其胞质内的糖原颗粒逐渐崩解;孵化第6天,性腺显示为卵巢或睾丸的特征,PGCs的糖原颗粒进一步崩解,鸡胚性腺开始分化;孵化第7天,性腺分化更为明显,PGCs胞质内糖原颗粒完全消失,细胞分化为卵原细胞或精原细胞;孵化第10-11天,卵巢明显区分为皮、髓质部,皮质部外区有大量增殖的卵原细胞群,呈共质体--合成体结构。卵原细胞已发育为初级卵母细胞的核网期。睾化第13天,卵巢皮质部变大,卵巢皮质部变大,髓质部变小。睾丸曲精细胞索的支持细胞增多,孵化第14-15天,卵巢皮质部出现原始卵泡,数量逐渐增多。睾丸内支持细胞进一步增多,间质细胞数达最多,成群分布在间质内;孵化第16-18天,雌性左侧卵巢皮质部外层的卵泡数量多,大小不一,呈有腔卵泡样结构;右侧性腺退化,似睾丸样结构。在雄性两侧睾丸,右侧稍大于左侧;精原细胞在曲精细索内数量地多达3层(18天)支持细胞在进一步增多,间质细胞分布稀疏。  相似文献   

8.
采集屠宰母牛卵巢和输卵管中的卵母细胞,进行体外受精,受精卵继续在体外培养。将发育3d的牛胚胎于42℃下分别培养0.5、2.0和4.0h,与对照组(39℃)牛胚胎相比,接触最高热应激(42℃,4h)处理的胚胎,约509/6的胚胎发育速度明显下降。而处理组牛胚胎发育到第9d的囊胚数、细胞数及内细胞团与滋养外胚层比率与对照组差异不显著(P〉0.05)。表明,温度升高对牛囊胚期胚胎的发育没有明显损害。对9d的囊胚进行基因性别分析发现,正常体外培养的雄胚发育快于雌胚,而在发育第3d受42℃热应激后,到囊胚期生存的胚胎性别比率发生改变,雌胚比率高于雄胚,表明雌性胚胎比雄性胚胎具有更强的抗热应激能力。  相似文献   

9.
旨在繁育并鉴定XY雌性小鼠,初步分析其生殖能力和性反转的机制,为小鼠发育过程中性别决定相关研究提供动物模型。XY雌性小鼠的鉴定分为表型鉴定和基因型鉴定两步:令B6.XY~(TIR)雄性小鼠与野生型B6雌性小鼠自然交配,选用30、60、90日龄仔鼠,观察其外生殖器特征和肛殖距以鉴定雌雄;处死交配后17.5天的孕鼠,取胎鼠,根据其性腺形态学和生殖细胞类型鉴定雌雄(表型鉴定)。提取仔鼠或胎鼠DNA,设计引物扩增Zfy基因(Y染色体上的特有基因),以确定其性染色体为XX或XY(基因型鉴定),结合表型鉴定,从而得到B6.XY~(TIR)雌性小鼠。本研究同时用全组织免疫荧光染色的方法分析胎儿期性腺的分化,用形态学观察的方法观察出生后小鼠内生殖系统,通过测序对Zfy基因的序列进行初步分析。本研究通过表型鉴定和基因型鉴定得到了一种XY性反转雌性小鼠;通过对出生小鼠内生殖系统的观察,发现其拥有与野生型XX雌鼠相似的卵巢、输卵管和子宫结构;同时初步研究了性腺分化过程中生殖细胞的分布,发现XY雌性胎鼠生殖细胞分布类型与野生型类似;在扩增Zfy基因进行基因型鉴定的同时,测序表明B6.XY~(TIR)的后代中,XY雄性和XY雌性均只有Zfy-1的基因,而未能扩增到Zfy-2基因;XY雌鼠在所有XY小鼠(99只)中所占的比例为47.47%。XY雌性小鼠拥有一套完整的雌性生殖系统,且性反转在胚胎发育过程中已经确立;B6.XY~(TIR)的Y染色体上可能缺失Zfy-2基因,推测其与性反转的发生有关系;本试验结果可为深入研究性腺分化和生殖细胞发生提供独特的视角。  相似文献   

10.
试验通过对鸭胚注射芳香化酶抑制剂(AI)和β-雌二醇(E2)构建性反转模型,观察其性腺外观形态变化,并荧光定量检测雌性基因P450arom、FOXL2、SF-1和雄性基因DMRT1、SOX9、AMH等6个基因在性反转和正常鸭胚中的表达情况。结果显示:芳香化酶抑制剂能促进公鸭性腺发育,母鸭表现雄化;雌二醇能促进母鸭性腺分化,公鸭表现雌化。DMRT1、SOX9、AMH表达趋势相似,AI促进基因表达使胚胎雄化;E2抑制基因表达使胚胎雌化。P450arom、FOXL2、SF-1在AI组中被抑制使胚胎雄化,在E2组中得到促进发生雌化。该研究结果为研究鸭胚性反转机制奠定理论基础。  相似文献   

11.
The aim of this study was to investigate the effect of FOXL2 gene on gonadal differentiation in chicken embryos.This test was divided into the experiment groups 1,2 and blank control group(chicken embryos were 260,100 and 20,respectively).In the experimental group,pLV-FOXL2 lentivirus recombinant plasmids and pLV empty plasmids were injected into the chicken embryo on the second day of the embryonic stage by subpaneoidal injection.The blank control group was not treated and incubated with the experimental groups until the chick was hatched.CHD1 gene genetic sex identification method was used to detect the sex of chicks,the changes of gonadal anatomy and histological structure were analyzed,and the expression levels of FOXL2 and CYP19A1 proteins were detected by immunohistochemistry.The results showed that in the experiment group 1,there were 23 male and 18 female of genetic sex,21 male and 18 female of phenotypic sex,and two of them had atypical phenotypic gender,with changes in the left gonadal gland toward ovarian structure.The phenotypic sex was consistent with the genetic sex in experiment group 2,with 9 male and 12 female.Positive PCR results showed that 10 positive individuals were obtained in the experiment group 1,with a positive rate of 24.4% (10/41),and 8 positive individuals were obtained in the experiment group 2,with a positive rate of 38.1% (8/21).The anatomical structure of the gonad showed that the volume of the left gonad was significantly larger than that of the right gonad in the positive plV-FOXL2 male embryos.The results of tissue sections showed that the gonad of male chicken embryo had typical structure of ovarian cortex and medulla.There was no significant change in the development of gonad in female embryos with positive pLV-FOXL2.Immunohistochemical results showed that the expression levels of FOXL2 and CYP19A1 proteins in the left and right testicle of experiment group 1 were similar to that in the hen ovary of the blank control group,and were significantly higher than that in experiment group 2 (P<0.05).These results suggested that FOXL2 gene might promote the sexual inversion of chicken gonads and played an important role in the differentiation and development of chicken gonads.  相似文献   

12.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells, which originate from primordial germ cells in the early embryo. Previously, we reported that the transplantation of fetal male gonadal tissue into the recipient testis was effective obtaining functional sperm. This transplantation technique is a promising new approach for the preservation of testicular function in a mutant animal with embryonic lethality. In the present study, we examined whether spermatogenesis from fetal male germ cells is induced under ectopic conditions in male and female recipients. Nine to 10 weeks after the transplantation of male gonads prepared from embryos at 12.5 or 16.5 days post gestation, male germ cell differentiation occurred under the skin of male and female recipient nude mice. Histological analyses revealed that grafted gonads contained haploid germ cells such as round or elongated spermatids. Furthermore, we succeeded in obtaining normal progeny by injecting the ectopically produced round spermatids into the cytoplasm of oocytes, even when the male germ cells had been generated in female recipients. These results indicate that the transplantation of fetal male gonads under the skin of recipient mice is a useful technique for obtaining functional male gametes.  相似文献   

13.
A series of experiments was conducted to investigate migration, proliferation and differentiation of gonadal germ cells (GGCs) collected from the gonads of 7-day-old chick embryos under cross-sex germline chimera conditions. The migratory and proliferative abilities of exogenous GGCs were examined by transferring 50 fluorescently labeled GGCs collected from White Leghorn (WL) embryos into the blood of 2-day-old Rhode Island Red (RIR) embryos. No significant difference was observed in the number of fluorescently labeled GGCs in the gonads of recipient embryos among any of the four possible donor and recipient sex combinations. Cross-sex germline chimeras were produced to examine the differentiation of GGCs by transferring 100 GGCs from WL embryos into 2-day-old RIR embryos. Exogenous-GGC-derived progeny were obtained from both male and female recipients, except when female GGCs were transferred into male recipients. The migratory ability of GGCs recovered from the 7-day-old embryonic gonad was not influenced by cross-sex germ cell transfer conditions, whereas the differentiation of the GGCs was affected by the sex combinations of GGCs donors and recipients.  相似文献   

14.
抑制芳香化酶活性对母鸡性腺分化和性行为的影响   总被引:2,自引:0,他引:2  
为研究雌激素在鸡性腺和性行为分化过程中的作用,本试验在受精蛋孵化第3天气室注入100μL生理盐水或芳香化酶抑制剂(AI),出雏后常规饲养到8月龄性成熟,观察其性行为的表现,检测性腺结构和血清性激素水平.结果发现,AI处理获得的性反转母鸡出现雄性第二性征和雄性交配行为,性腺形态和组织学检查结果表明其性腺得到了不同程度的反转(1)完全反转母鸡右侧性腺发育成为睾丸,而左侧性腺出现不同程度的反转.两侧性腺均出现精细管结构,管径较正常窄,发育不完整,精细管内大量分布生殖细胞,右侧性腺的间质较左侧发达;(2)不完全反转母鸡的右侧性腺退化,左侧仍为完整卵巢.血清中雌二醇(E2)含量为不完全反转母鸡>正常母鸡>完全反转母鸡>正常公鸡;睾酮(T)含量为完全反转母鸡>不完全反转母鸡>正常公鸡>正常母鸡,雄性交配频率与血清T/E2的比值呈正相关.以上结果表明,在性分化前用AI阻断雌激素的合成可引起雌性性腺结构和激素分泌功能及性行为雄性化,而血清T和E2含量及其比值决定了性反转母鸡雄性交配行为的频率和强度.  相似文献   

15.
16.
The reproductive system in female birds arises as bilateral asymmetrical anlagen, excluding the birds of prey. Earlier, histological and messenger RNA (mRNA) expression profile studies of several genes related to gonadal sex differentiation in chicken embryos tried to elucidate the query of this asymmetry in a scattered manner. To understand the matter precisely, we have focused on mRNA expression of a cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) in second half of the embryonic days (E10–E18). The established role of leptin in development of the embryo and its expression in the embryonic ovary also drove us to check leptin receptor (LEPR) expression in the ovary. Increased expression of FSHR and CYP19A1 in the left ovary compared with that in the right ovary was identified (< 0.05), promoting preferential left ovarian development and functionality. Significant high expression (< 0.05) of the apoptotic genes in the right ovary were also involved here. Leptin probably has no direct influence on ovarian asymmetry as no significant variation in gonadal mRNA expression of LEPR was observed within the same experimental days. We propose that asymmetric expression of this cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) leads to the development of dimorphic gonads during embryogenesis.  相似文献   

17.
鹌鹑早期胚胎bcl-2基因表达的差异及发育性变化   总被引:1,自引:1,他引:0  
采用RT-PCR方法,用Wpkci和β-actin引物进行多重PCR鉴定66~120 h鹌鹑胚胎样本性别后,选取不同时间点雌、雄胚胎各4枚,以β-actin为内标,测定bcl-2 mRNA的相对丰度;探讨bcl-2对鹌鹑早期胚胎发育的影响。结果表明:①雄性胚胎在66~90 h bcl-2 mRNA表达量一直维持在较低水平,96~102 h bcl-2 mRNA有所增加,但96与102 h间差异不显著(P>0.05),在108 h显著降低(P<0.05);与108 h相比,114 h显著升高,120 h维持在较高水平。雄性胚胎在66~108 h(72 h除外)bcl-2 mRNA表达均比雌性胚胎的表达量低,在114~120 h bcl-2 mRNA表达水平均比雌性胚胎的高。②雌性胚胎在66~90 h bcl-2 mRNA表达量一直维持在较低水平;与90 h相比,96 h显著升高,96~120 h逐渐降低,其中96~108 h下降,但三者间差异不显著(P>0.05);与108 h相比,114~120 h显著下降(P<0.05)。③相同时间点雌、雄胚胎间的比较结果表明,84 h雌性胚胎bcl-2 mRNA表达显著高于雄性胚胎(P<0.05),90、108 h雌性胚胎bcl-2 mRNA表达极显著高于雄性胚胎(P<0.01);而在120 h雄性胚胎bcl-2 mRNA表达极显著高于雌性胚胎(P<0.01)。鹌鹑胚胎发育早期,雌、雄样本bcl-2 mRNA表达存在一定的时序性,说明bcl-2对雌、雄鹌鹑早期分化及早期胚胎发育有重要影响。  相似文献   

18.
分别从孵化3d的已鉴定性别的鸡与鹌鹑属间杂交早期雌性和雄性胚胎组织中提取小RNA,并构建各自的cDNA文库,通过Illumina/Solexa二代测序平台对两样本SmallRNA进行高通量深度测序,结合生物信息学的方法对其属间杂交早期的雌性和雄性胚胎中已知的和预测的miRNAs的类型、长度、丰度以及参与的KEGG通路等进行了初步的统计和分析。结果显示,鸡与鹌鹑属间杂交早期雌性胚胎组织的比对序列有16058009条,雄性组织有17943294条;雌性胚胎预测得到132种miRNA,雄性胚胎预测得到460种miRNA;雌性和雄性样本间差异显著的miRNA有117个(P〈0.01);KEGG通路分析表明,这些差异miRNAs的靶基因主要参与了wnt信号通路、MAPK信号通路、TGF-beta信号通路等与胚胎生长发育相关的途径。结果表明,就已知的miRNAs而言,在鸡与鹌鹑属间杂交雌性和雄性胚胎问存在着一定的差异,这些差异的miRNAs将为后续的功能和调控机理实验研究提供依据。  相似文献   

19.
【目的】 探求一种无损的、非侵入性的、快速的胚胎性别鉴定方法。【方法】 以207个猪卵胞质内单精子显微注射(intracytoplasmic sperm injection,ICSI)胚胎及其培养液为研究对象,单个胚胎经巢式PCR扩增鉴定其性别后随机分成训练集和测试集,同时利用拉曼光谱技术获取单个ICSI胚胎培养液的拉曼光谱。原始光谱经过处理后,采用支持向量机(support vector machine,SVM)算法构建分类模型,先用训练样本进行训练和建模,然后预测测试样本的性别,结合PCR性别鉴定的结果,计算分类准确率。【结果】 通过巢式PCR对207个胚胎进行性别鉴定,鉴定出71个雄性胚胎、128个雌性胚胎,8个样品扩增失败。猪ICSI雄性胚胎培养液在1 082和1 360 cm-1拉曼位移处特征峰强度明显高于雌性胚胎,构建的胚胎性别鉴定模型的分类准确率为81.5%,雌性和雄性胚胎的分类准确率分别为81.3%和81.8%。【结论】 本研究将拉曼光谱技术与SVM法相结合构建了胚胎性别鉴定模型,分类准确率达到81.5%,提供了一种新的、无损的胚胎性别鉴定方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号