首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Profitability of a beef operation is determined by the proportion of cows attaining pregnancy early in the breeding season and those that are pregnant at the end of breeding season. Many factors, including temperament, contribute to those reproductive parameters. The objective of this study was to evaluate effects of temperament on reproductive performance of beef cows. In Experiment 1, Angus and Angus‐cross beef cows (n = 1546) from eight locations were assigned a body condition score (BCS; 1 = emaciated; 9 = obese) and chute exit and gait score (1 = slow exit, walk; calm temperament; 2 = jump, trot or run; excitable temperament). Cows were grouped with bulls (1 : 25 to 1 : 30; with satisfactory breeding potential and free of venereal disease) for an 85‐day breeding season. Pregnancy status and stage of gestation were determined (transrectal palpation) 35 days after the end of the breeding season. Controlling for BCS (p < 0.01) and handling facility (p < 0.0001) and handling facility by temperament score interaction (p < 0.001), breeding season pregnancy rate was lower in excited versus calm cows [88.6% (798/901) vs 94.1% (607/645); p < 0.001]. Cows with an excitable temperament took 24 more days to become pregnant compared to calm cows (median days to pregnancy, 35 vs 59 days; p < 0.0001). In Experiment 2, Angus and Angus‐cross beef cows (n = 1407) from 8 locations were assigned scores for body condition and chute exit and gait (as described in Experiment 1) and assigned to bulls (breeding sound and free of venereal disease; 1 : 25 to 1 : 30) for 85 days. Pregnancy status was determined by transrectal palpation at 2 and 6 months after the onset of the breeding season. Controlling for BCS (p < 0.05), pregnancy loss was higher in excited versus calm cows [5.5% (36/651) vs 3.2% (20/623), p < 0.0001]. In conclusion, beef cows with an excitable temperament had significantly lower reproductive performance than calmer cows. The modified two‐point chute exit–gait scoring method was repeatable and identified cattle with an excitable temperament.  相似文献   

2.
Two experiments were conducted to determine (i) factors influencing calf temperament at weaning, (ii) association between heifer–calf temperament at weaning and temperament at breeding and (iii) effect of heifer–calf temperament on pregnancy rate per artificial insemination (P/AI). In experiment 1, beef cows and their calves (n = 285) from three farms were used. Sire docility estimated progeny difference (EPD) score, birth type (normal or assisted), calf gender, calf behaviour (during 1st 4 weeks) and calf health status (until weaning) were recorded. Cows and calves were assigned a temperament score (0—calm; 1—excitable), and all cows were given a body condition score (BCS, 1–9; 1—emaciated; 9—obese) at weaning. Calf's illness (< .05), low sire docility EPD score (< .05), altered gait (< .05), altered resting behaviour (< .01), reduced/no play behaviour (< .05) and cow excitable temperament (< .001) increased calf excitable temperament at weaning. In experiment 2, replacement heifer–calves (n = 758) from 12 farms were assigned a temperament score at weaning and later at breeding. Blood from 40 calves at weaning and 31 heifers at initiation of synchronization (same animals) was collected by coccygeal venipuncture for determination of circulating cortisol and substance P concentrations. Heifers were assigned a BCS and reproductive tract score (RTS, 1–5; 1—immature, acyclic; 5—mature, cyclic), synchronized for fixed time AI, observed for oestrus and were artificially inseminated. Cortisol concentrations were increased in excitable heifer–calves compared to calm heifer–calves at weaning (< .05), and substance P was increased in excitable compared to calm females both at weaning and breeding (< .05). Low sire EPD docility score (< .01), heifer–calf excitable temperament at weaning increased excitable temperament at breeding (< .01). Controlling for BCS categories (< .01), oestrous expression (< .0001) and temperament at breeding by oestrous expression (< .05), the calf's excitable temperament at weaning (< .001) reduced P/AI (Calm, 62.7 (244/389) vs. Excitable, 53.4% (197/369); < .01). In conclusion, selection of docile cows and sires with greater docility EPD score should be given consideration to reduce calf excitement. Temperament in beef female can be detected earlier in their life and could be used as a tool in the selection process and to improve their performances.  相似文献   

3.
This study compared artificial insemination pregnancy rate (AI‐PR) between 14‐day CIDR‐GnRH‐PGF2α‐GnRH and CIDR‐PGF2α‐GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (= 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no‐GnRH group (= 635) or to GnRH group (= 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI‐56 or AI‐72 groups. Heifers in AI‐56 group (= 667) were inseminated at 56 hr (day 32 PM), and heifers in AI‐72 group (= 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (< .05), RTS (< .05), oestrous expression (< .001), temperament (< .001) and GnRH treatment by time of insemination (< .001), the AI‐PR differed between GnRH treatment [GnRH (Yes – 60.9% (412/676) vs. No – 55.1% (350/635); < .05)] and insemination time [AI‐56 – 54.6% (364/667) vs. AI‐72 – 61.8% (398/644); (< .01)] groups. The GnRH treatment by AI time interaction influenced AI‐PR (GnRH56 – 61.0% (208/341); GnRH72 – 60.9% (204/335); No‐GnRH56 – 47.9% (156/326); No‐GnRH72 – 62.8% (194/309); < .001). In conclusion, 14‐day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI‐PR.  相似文献   

4.
The study evaluated the effect of gender status on carcass and meat quality of feedlot Angus × Nellore cattle. A total of 176 cattle, 20 months old, were confined for 190‐days and assigned to four treatments: bulls, immunocastrated, steers, and heifers. Bulls had greater rib eye area and HCW (p = 0.0001). Heifers had increased fat thickness (p = 0.0001). Steers and heifers had higher marbling scores (p = 0.0001). There was interaction between gender and aging time for Warner‐Bratzler Shear Force (p = 0.0002), L* (p = 0.0118), and b* (p = 0.0113) values of beef. The sensory panel results showed that beef from bulls had the lowest consumer overall acceptance (p = 0.0278). Especially, regardless tenderness, steers and immunocastrated beef were considered tender, independent of aging time. Beef produced by heifers, steers, and immunocastrated is considered to be of higher quality than bulls. Thus, it is may be an interesting alternative to produce high‐quality beef than bulls, to attend the consumer demand for high‐quality products. Additionally, the low fatty acids n6 levels and low n6:n3 ratio, high levels of CLA, MUFAs, and oleic acid suggests that the heifer meat is favorable for human health.  相似文献   

5.
This study evaluated the association between plasma anti-Mullerian hormone (AMH) concentration and fertility in Nelore (Bos indicus) heifers submitted to timed artificial insemination (TAI). At the onset of the synchronization protocol, heifers (n = 289) received a subcutaneous P4 ear implant (3 mg) and 2 mg of oestradiol benzoate. Eight days later, the P4 implant was removed and 0.5 mg of oestradiol cypionate, prostaglandin (0.265 mg, i.m.) and equine chorionic gonadotropin (300 UI, i.m.) was administered, and TAI was performed 48 hr after ear implant removal. Ovarian ultrasound evaluations were performed to measure number of ovarian follicles, dominant follicle size and ovulation response. Pregnancy diagnosis was performed by ultrasound 30 days after AI. Heifers with greater circulating AMH had more antral follicles, a smaller dominant follicle near timed ovulation and lower ovulation response to the timed AI protocol compared to heifers with lower circulating AMH. Although AMH and pregnancy outcome had a quadratic-shaped pattern, AMH was not significantly associated with fertility. In conclusion, heifers with lower AMH had larger follicles towards the end of the synchronization protocol and greater ovulation responses, whereas greater circulating AMH was unrelated to conception success.  相似文献   

6.
The objectives were to evaluate the reproductive indices and survival analysis of pregnancy outcomes in multiparous repeat breeder Holstein cows (n = 557). The cows were synchronized to ovulate by Ovsynch, new controlled internal drug release device (N‐CIDRsynch), and once‐used CIDR device (U‐CIDRsynch). The pregnancy per AI at 28 days post‐insemination (P/AI 28) in the N‐CIDRsynch group (28.75%) was significantly (COR = 1.49; p = 0.011) greater than that reported in the Ovsynch (23.46%) and U‐CIDRsynch (21.73%) groups. Furthermore, the pregnancy per AI at day 75 post‐insemination (P/AI 75) in the N‐CIDRsynch group was significantly greater than the Ovysync group (COR = 1.35; p = 0.050). The repeat breeder cows received a N‐CIDR device had a significantly higher progesterone level on day 2 and day 4 of CIDR insertion (1.38 and 1.67 ng/ml, respectively) than those received a U‐CIDR device or the control group (p = 0.012 and 0.001, respectively). The Cox regression model recorded significant associations for synchronization protocols, THI at the TAI and season of calving with the hazard of P/AI 28 and P/AI 75 (p = 0.044 and 0.046; 0.001 and 0.005; 0.003 and 0.001, respectively). Multiparous repeat breeder cows (>3) had a lower hazard ratio (HR) of P/AI 28 than that reported in the reference (2nd parity) group (HR = 0.74, p = 0.050). The repeat breeder cows inseminated at 76–80 and >80 temperature‐humidity index (THI) had significantly lower HR of P/AI 28 than those inseminated at the baseline (<70) THI value (HR = 0.73 and 0.30, p = 0.036 and 0.001, respectively). The current results indicate that the use of N‐CIDR synch protocol may achieve satisfactory pregnancy outcomes in repeat breeder cows.  相似文献   

7.
The objective of the study was to evaluate the interval from onset of oestrus to time of artificial insemination (AI) to obtain the optimum pregnancy rate with sex-sorted semen in Holstein heifers. Heifers in oestrus were detected and inseminated only by using heat–rumination neck collar comprised electronic identification tag at the age of 13–14 months. Heifers (n = 283) were randomly assigned to one of three groups according to the timing of insemination at 12–16 hr (G1, n = 97), at 16.1–20 hr (G2, n = 94) and at 20.1–24 hr (G3, n = 92) after reaching the activity threshold. The mean duration of oestrus was 18.6 ± 0.1 hr, and mean peak activity was found at 7.5 ± 0.1 hr after activity threshold. The mean interval from activity threshold to ovulation was 29.4 ± 0.4 hr. The overall pregnancy per AI (P/AI) was 53.0% at 29–35 days and 50.9% at 60–66 days after AI. There was a significant reduction between G1 (13.8 ± 1.4 hr) and G3 (7.9 ± 1.4 hr) related to the intervals from AI to ovulation time. Sex-sorted semen resulted in significantly higher P/AI at 29–35 days when heifers inseminated in G3 (60.9%) after oestrus than those inseminated in G1 (49.5%) and G2 (48.9%). In terms of fertility, when the temperature–humidity index (THI) was below the threshold value (THI ≤65) at the time of AI, there was a tendency (≤65; 57.2% vs. > 65; 47.1%) for high pregnancy rate. There was no effect of sire on P/AI. In addition, the interaction of the technician with the time of AI was found significant, and three-way interaction of technician, sire and time of AI was tended to be significant on pregnancy rate. Thus, in addition to delaying the time of insemination (between 20.1 and 24 hr) after oestrous detection, THI and experienced technician were also found to be critical factors in increasing fertility with the use of sex-sorted semen in Holstein heifers.  相似文献   

8.
The objective of this study was to evaluate synchronization and pregnancy rates of beef heifers supplemented with 0.91 kg of whole sunflower seeds for 0, 30, or 60 d before AI. Beef heifers from four locations (n = 1,014) were assigned by BW to treatment (within location) and randomly to AI sire. Heifers at Location 1 (n = 176; mean BW = 332 kg) received either 0- or 60-d sunflower seed treatments. Heifers at Location 2 (n = 397; mean BW = 334 kg) were fed sunflower seeds for 0, 30, or 60 d. Heifers at Locations 3 (n = 211; mean BW = 345 kg) and 4 (n = 230; mean BW = 343 kg) received 0- or 30-d sunflower seed treatments. Within location, diets were formulated to be isocaloric and isonitrogenous. All heifers received melengesterol acetate (0.5 mg/d per head) for 14 d followed 19 d later by an injection of prostaglandin F2a (PGF) (25 mg). Heifers were bred by AI according to the AM/PM rule except on d 3 when all heifers that had not exhibited estrus were artificially inseminated in mass. Neither 72-h estrous response nor pregnancy rate was affected (P>0.10) by 30- or 60-d sunflower feeding. In summary, feeding 0.91 kg of whole sunflower seeds for either 30 or 60 d before AI did not improve estrous response or pregnancy rate when compared with controls.  相似文献   

9.
The study aimed to evaluate pregnancy per artificial insemination (P/AI) of cows subjected to synchronization and resynchronization in ovulation protocols using intravaginal progesterone‐releasing insert (P4) before pregnancy diagnosis (PD) and the relationship of PR with the diameter of preovulatory follicles (ØPOF) before TAI. Cows (n = 378) were distributed into two groups: a resynchronization group with new devices (GRN; n = 185) and resynchronization group with used devices (GRU; n = 193). On Day 0, both groups received a new P4 and estradiol benzoate (EB). On D8, P4 removal + D‐cloprostenol + eCG + estradiol cypionate (EC) was done. On d10, TAI was conducted. On d32, cows were resynchronized and divided into two groups, GRN (n = 185) and GRU (n = 193). The GRN group received a new P4 + EB, and the GRU group received a used P4 + EB. On d40, the P4 was removed + PD. The non‐pregnant cows received D‐cloprostenol + eCG + EC. US was done again on d42 to determine ØPOF before the second TAI. The P/AI of the GRN and GRU groups after synchronization were 56.2% and 57.0% (p = 0.87), respectively, and those after resynchronization were 58.0% and 37.3% (p < 0.008), respectively. The P/AI of the GRN and GRU groups observed after TAI (synchronization + resynchronization) were 81.6% and 73.1%, respectively (p = 0.047). No difference (p = 0.067) in ØPOF between the pregnant and non‐pregnant cows in the GRN was found, whereas the GRU group showed a significant difference (p = 0.003). Resynchronization protocols optimized the P/AI in both groups. New intravaginal devices resulted in greater P/AI and P/AI accumulation in resynchronization as compared with the GRU; the ØPOF was related with P/AI.  相似文献   

10.
This prospective study was designed to investigate the effects of maternal temperament on uterine blood flow, fetal heart rate, gestational length, and fetal birth weight in a goat experimental model. Based on the arena test, behavioral testing related to fear-eliciting stimulus, goats were divided into nervous (n = 13) and calm (n = 11) groups. After mating, the perfusion of maternal uterine arteries (UTAs) and its related Doppler parameters, blood flow volume (BFV), time-averaged mean velocity (TAMEANV), acceleration (Acce), and resistance impedance (S/D), were evaluated biweekly from week two until the end of pregnancy. Fetal heart rate (FHR) was investigated during the pregnancy in addition to the gestation length (GL) and fetal birth weight (FBW). The UTA-BFV and TAMEANV, as well as Acce and S/D, were influenced by maternal temperament (p < .05). The FHR showed no significant changes between experimental animals of different temperaments (p = .81). Both GL and FBW were increased in calm rather than nervous goats (p < .05). These results indicated that the maternal nervous (temperament) have negative impacts on uterine artery Doppler indices, fetal growth, and gestational length in a goat experimental model.  相似文献   

11.
This study aimed to determine the effect of flunixin meglumine treatment during and after the transfer of in vivo produced embryos to Angus (cows) and Holstein (cows and heifers) breeds of cattle on pregnancy rate. Holstein cows were used as donors in the study. A double dose of prostaglandin F2α was administered to the recipient animals for synchronization. Uterine flushing was performed in donors on day 7 after artificial insemination. A total of 295 transferable embryos were obtained. These embryos were transferred to Angus cows (n = 85), Holstein heifers (n = 80) and Holstein cows (n = 130). After the transfer, these animals were divided into three subgroups. The first subgroup (TI) was administered flunixin meglumine during embryo transfer, and the second subgroup (TII) was administered flunixin meglumine both during embryo transfer and on days 8 and 9 after the transfer. The third subgroup (TIII) was not administered anything and it was considered the control group. Pregnancy examination of the recipients was performed on days 30–35 after the transfer using real-time ultrasonography. The pregnancy rates after embryo transfer were found to be 43.52% in Angus cows, 42.5% in Holstein heifers, and 24.61% in Holstein cows (p < .05). When the animals were not classified according to breed, the pregnancy rates in subgroups TI, TII and TIII were found to be 29.29%, 45.10% and 29.79%, respectively (p < .05). In addition, the pregnancy rates were higher in TII and TIII subgroups of Angus cows and Holstein heifers compared to that of Holstein cows (p < .05). As a result, the pregnancy rates obtained after embryo transfer in Angus cows and Holstein heifers were found to be higher than that in Holstein cows. In addition, it was concluded that the administration of flunixin meglumine during and during/after embryo transfer has a positive effect on pregnancy rates in Angus cows and Holstein heifers.  相似文献   

12.
The primary objective of this study was to determine whether a single measurement of intravaginal electrical resistance (VER), using the commercially available Ovatec® probe, can discriminate between dioestrus and oestrus in Bos indicus females, which had been treated to synchronize oestrus. Santa Gertrudis heifers (n = 226) received one of three oestrous synchronization treatments: double PGF 10 days apart, 8‐day controlled internal drug release (CIDR) treatment or CIDR pre‐synchronization + PGF 10 days after CIDR removal. The heifers were inseminated within 12 h following observed oestrus, or, if not observed, at a fixed time approximately 80 h, following the last synchronization treatment. They were palpated per rectum for signs of pregnancy 9 weeks after artificial insemination (AI). Vaginal electrical resistance measurements were taken at the completion of synchronization treatments (presumed dioestrus), immediately prior to AI (oestrus), and then at 3 and 9 weeks post‐AI. Mean VER differed between presumed dioestrus and oestrus (113.7 vs 87.4, p < 0.001). The area under the receiver operating characteristics (ROC) curve was 0.925, indicating that VER was highly discriminatory between dioestrus and oestrus. Vaginal electrical resistance at time of AI was negatively associated with odds of conception when all inseminations were included in the analyses [odds ratio (OR) = 0.97; 95% CI 0.95–1.00; p = 0.018], but not when fixed time AIs were excluded (OR = 1.00; 95% CI 0.97–1.03; p = 0.982). Mean VER readings differed between pregnant and non‐pregnant animals at both 3 weeks (120.5 vs 96.7, p < 0.001) and 9 weeks (124.0 vs 100.3, p < 0.001) post‐AI. However, 3‐ and 9‐week VER measurements were not highly discriminatory between pregnancy and non‐pregnancy (area under ROC curve = 0.791 and 0.736, respectively). Mean VER at time of AI for animals diagnosed in oestrus differed between each of the oestrous synchronization treatments (84.7, 73.6 and 78.9, groups 1–3 respectively, p < 0.001). These findings suggest that measurement of VER may improve accuracy of oestrus diagnoses when selecting cattle for AI following oestrous synchronization programmes involving tropically adapted cattle.  相似文献   

13.
The objective was to compare pregnancy per artificial insemination (P/AI) with conventional (CS) or sex‐sorted semen (SS) in dairy cows subjected to one of the three timed AI protocols. Cows (n = 356) were randomly assigned to synchronization with Ovsynch (OVS), Presynch–Ovsynch (PO) or Double‐Ovsynch (DO) and inseminated on Day 77 ± 3 postpartum with either frozen‐thawed SS (n = 182) or CS (n = 184) of the same bull. More cows were cyclic at the beginning of breeding Ovsynch increased (p < 0.01) with presynchronization and it was greater for DO than PO (OVS = 78.5%, PO = 85.1%, DO = 95.6%). Overall, P/AI for SS and CS increased with presynchronization (p < 0.05) on Days 31 (OVS = 35.5%, PO = 47.1%, DO = 48.3%) and 62 (OVS = 30.1%, PO = 43.8%, DO = 43.9%). Regardless of synchronization treatments, insemination with SS reduced P/AI (p < 0.02) on Days 31 (38.1% vs. 50.6%) and 62 (34.5% vs. 45.6%) compared with CS. No interaction was observed between synchronization treatment and type of semen for P/AI, although in cows receiving CS, P/AI was numerically greatest for PO (OVS = 42.0%, PO = 59.3%, DO = 49.0%), and in cows receiving SS, it was numerically greatest for those inseminated following DO (OVS = 27.9%, PO = 35.5%, DO = 47.6%). Thus, presynchronization improved P/AI in cows inseminated with sex‐sorted or conventional semen.  相似文献   

14.
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.  相似文献   

15.
We evaluated the effects of feeding high volumes of milk replacer on growth and reproductive performances in Japanese black heifers. Fifty-one heifers were fed milk replacer at 9 L/day for 60 days (9 L × 60 days; n = 18) or 41 days (9 L × 41 days; n = 15), or at 7 L/day for 40 days (7 L × 40 days; n = 18). Artificial insemination (AI) was performed on heifers with ≥270 kg body weight and ≥116 cm body height at 300 days of age. The age at the first AI was 0.35 month later for 7 L × 40 days than the other groups (p < .01). However, age at calving did not differ among treatments (22.1 months). The interval from the first AI to pregnancy tended to be ~2 months longer for the 9 L × 60 days than the other groups (p = .07). Our results showed that feeding high volumes of milk replacer may reduce the age at calving via an improved rate of growth. In addition, we propose that feeding a maximum of 7 L milk replacer for 40 days may be the most appropriate rearing regime because the success of pregnancy per AI may be reduced in calves fed a maximum of 9 L for 41 and 60 days.  相似文献   

16.
The objective of the study was to compare the fertility after using sex-sorted or conventional semen either with oestrus detection (EST) or timed artificial insemination (TAI) in Holstein heifers. Holstein heifers were randomly assigned to one of the following treatments in a 2 × 2 factorial design. Heifers in the EST group were inseminated with sex-sorted (n = 114) or conventional semen (n = 100) after spontaneous or induced oestrus. Heifers in the TAI, subjected to the 5-day Cosynch+Progesterone protocol (GnRH+P4 insertion-5d-PGF+P4 removal-1d-PGF-2d-GnRH+TAI), were inseminated with sex-sorted (n = 113) or conventional semen (n = 88). Statistical analyses were performed using PROC GLIMMIX procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). Overall P/AI was 60.7% for EST and 54.2% for TAI regardless of types of semen and 68.1% for conventional and 48.9% for sex-sorted semen regardless of insemination strategies. Fertility of heifers inseminated with either sex-sorted (53.5%; 44.2%) or conventional (69.0%; 67.0%) semen did not differ between EST and TAI respectively. Besides, the interaction between the semen type and the insemination strategy was not significant for P/AI. The embryonic loss was significantly greater with sex-sorted semen (17.1%) compared to conventional semen (1.6%). There was no sire effect with sex-sorted semen on P/AI (52.6% vs. 46.2%) and embryonic loss (16.4% vs. 18.0%). As expected, sex-sorted semen resulted in more female calves (89.8% vs. 51.6%) than conventional semen. Thus, sex-sorted semen can be used with 5-day Cosynch+Progesterone protocol to eliminate the inadequate oestrus detection and to increase female calves born in dairy heifers.  相似文献   

17.
Two estrous synchronization protocols were used to determine their effect on estrous characteristics, synchronization rates, and pregnancy rates in nulliparous beef heifers on a commercial cow-calf operation in western New Mexico. Fifty-three Red Angus and Angus × Hereford heifers were sorted by age and BW to compare heifers treated with gonadotropin-releasing hormone (GnRH) 7 d before treatment with prostaglandin F [PGF; SelectSynch (SS); n = 26] and heifers treated with two administrations of PGF 14 d apart [Targeted Breeding™ (TB) (Pharmacia, Kalamazoo, MI); n = 27). An androgenized cow fitted with a chin-ball marker was placed in each pen of heifers, and a HeatWatch (HW) transmitter (DDx, Inc., Denver, CO) was attached to each heifer to monitor estrous characteristics. Heifers were artificially inseminated after estrus was determined by HW. Number of standing events tended (P=0.12) to increase for TB heifers compared with SS heifers (54.4 ± 7.4 and 37.5 ± 7.7, respectively). Duration of estrus was increased (P<0.05) in TB heifers (16.0 ± 1.3 h) compared with SS heifers (11.6 ± 1.3 h). However, overall synchronization and pregnancy rates were similar (P>0.10) between protocols. Androgenized cows identified 53% of the estruses detected by HW. When utilizing synchronization protocols, radiotelemetric estrous detection systems may identify more heifers in estrus than androgenized cows. Intensity of estrus was increased in TB heifers compared with SS heifers; however, synchronization and pregnancy rates were not influenced by synchronization protocol.  相似文献   

18.
The present study was performed to test fertility in single‐ovulating and superovulated dairy heifers after insemination with low dose sex‐sorted sperm under field conditions. Some parameters, including the dosage, deposition site and timing, were assessed with the pregnancy rates after artificial insemination (AI). Moreover, the use of oestrus synchronization in combination with sorted sperm was evaluated. Besides that, we also improved the embryo production efficiency in superovulated dairy heifers by optimizing the timing of inseminations and repartitioning the sexed sperm dosage among multiple inseminations. The conception rate (52.8%) in heifers after low dose (2 × 106) insemination with sorted sperm deep into the uterine horn did not differ (p > 0.05) from that (59.6%) of conventional AI (1 × 107 non‐sorted sperm) and that of deep insemination with low dose non‐sorted sperm (57.7%). There was also no difference (p > 0.05) between conception rates after single (51.7%) and double (53.8%) deep insemination with sorted semen. Heifers inseminated with sorted sperm at synchronous oestrus had a lower pregnancy rate (48.1%) than heifers at spontaneous oestrus (53.6%), but this did not reach statistical difference (p > 0.05). The average number of transferable embryos collected in vivo from heifers inseminated with sorted sperm (4.81 ± 2.04) did not differ (p > 0.05) from that obtained from heifers after insemination with non‐sorted sperm (5.36 ± 2.74). Thus, we concluded that the pregnancy rate after deep intra‐uterine insemination with low dose sorted sperm was similar to that of non‐sorted sperm, which was either also deposited at a low dose deep intra‐uterine or into the uterine body. Sychronization of oestrus can be beneficial in combination with sorted sperm to optimize the organization and management of dairy herds. The results from superovulated heifers demonstrated that our insemination regime can be used to obtain a comparable embryo production efficiency with sorted sperm than with non‐sorted sperm.  相似文献   

19.
Haematological metabolic profiles in heifers could contribute to the development of proxies for oestrous detection and provide clues to further characterize biological changes during oestrus. One hundred and seven beef heifers were observed for oestrous behaviour twice daily for 124 days. Feed intake and productive performance (body weight and composition) traits were measured, and feed efficiency was determined using residual feed intake (kg DM/day). Blood plasma samples were collected when signs of oestrus were observed and every 30 ± 2 days. Heifers were considered in oestrus (n = 71) when plasma progesterone concentrations were <0.6 ng/ml. Least square means of blood metabolic parameters were compared between oestrous and non‐oestrous states and within oestrous groups according to performance traits and age. Heifers in oestrus exhibited higher concentrations of alkaline phosphatase, aspartate aminotransferase (AST), beta‐hydroxybutyric acid, creatine kinase (CK) and triiodothyronine (T3) than heifers in non‐oestrus. Heifers in oestrus revealed lower osmolality and concentrations of calcium, sodium and total protein than during non‐oestrus. Younger (and smaller) heifers had greater concentrations of CK, gamma‐glutamyl transferase (GGT), glucose and sodium than the older heifers. Heifers with lower fatness had increased osmolality and concentrations of cholesterol, CK, phosphorus, sodium and reduced T3 levels. Feed efficient heifers had greater levels of AST, cholesterol and GGT than inefficient heifers. Blood plasma parameters may be complementary to oestrous detection upon further validation; effects of age, feed efficiency, body size and body composition should be considered to optimize this haematological assessment.  相似文献   

20.
The main objective of this study was to determine if administration of meloxicam, a cyclooxygenase (COX) two inhibitor, to heifers in which embryo transfer (ET) is more difficult and requires a greater manipulation of the tract, would be beneficial. Nulliparous recipient heifers were divided in two groups: CON (n = 102), in which animals received 10 ml of saline IM (the same volume of meloxicam) and MEL (n = 105) animals that were treated with meloxicam. According to the degree in passing the catheter, recipients from both groups were classified as Grade I, easy (< 60 s), and Grade II (more than 80 s), difficult. Immediately after embryo transfer, MEL recipients received an injection of 200 mg of meloxicam (10 ml).There was no difference in the pregnancy rates on Day 35 considering animals which presented Grade I cervix independently whether the treatment was performed or not (p = 0.22). There was a statistical difference in the pregnancy rates (p < 0.01) between both groups (49.0% and 66.7% for CON and MEL, respectively) when cervical grade was not considered, on Day 35. Considering the animals that presented Grade II cervix, the pregnancy rate was higher for MEL (21.15% and 78.84%, respectively) in both examinations (p < 0.01).The authors concluded that meloxicam had a positive influence on general pregnancy rate of treated heifers in comparison to non‐treated heifers. It was also observed that pregnancy rate was not influenced by meloxicam administration in Grade I heifers. Treatment increased the pregnancy rate of Grade II heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号