首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate various equine follicle-stimulating hormone (eFSH) treatment protocols and the effect of “follicle coasting” on ovulation and embryo recovery rates in mares. Cycling mares (n = 40) were randomly assigned to one of four groups 7 days after ovulation: (1) 12.5 mg eFSH twice daily until follicles were 35 mm or larger; (2) 12.5 mg eFSH twice daily until follicles were 32 mm or larger; (3) 12.5 mg eFSH twice daily for 3.5 days followed by 12.5 mg eFSH enriched with luteinizing hormone (LH) twice daily until follicles were 35 mm or larger; and (4) 25 mg eFSH once daily until follicles were 32 mm or larger. Mares in groups 1 and 3 were injected with human chorionic gonadotropin (hCG) (2500 IU intravenously) at the end of eFSH treatment, whereas mares in groups 2 and 4 were given hCG approximately 42 and 54 hours, respectively, after the last eFSH treatment (“follicle coasting”). Nonsurgical embryo collection was performed 6.5 to 7.5 days after ovulation. Each mare experienced a nontreated estrous cycle before being reassigned to a second treatment. Ovulation rates for mares in treatment groups 1 to 4 were 3.3 ± 0.4, 4.1 ± 0.4, 3.5 ± 0.4, and 2.8 ± 0.4 (mean ± SEM; P < .05), respectively. One or more embryos were recovered from more than 80% of mares in each treatment group, and embryo recovery rate per flush was similar among treatment groups (1.9 ± 0.3, 2.6 ± 0.3, 1.9 ± 0.3 and 1.9 ± 0.3, respectively; P > .05). The overall embryo recovery rate was 2.1 ± 1.5 embryos per flush. In summary, ovulation rate was higher for mares treated with eFSH (3.4 ± 0.4) compared with non-treated controls (1.1 ± 0.2). Ovulation rate in mares in which hCG was delayed (follicle coasting) was higher (P < .05) when treatments were given twice per day versus once per day. Administration of equine luteinizing hormone (eLH) in conjunction with eFSH did not have an advantage over mares treated only with eFSH.  相似文献   

2.
Horse owners want to have their mares bred as early as possible in the breeding season after February 1. Numerous medical treatments, such as progesterone, dopamine antagonists, and gonadotropin-releasing hormone have been administered to anestrous or transitional mares in an attempt to induce follicular development. Some of these treatments are ineffective or impractical, so there is a need in the horse industry to develop alternative techniques to stimulate follicular development and ovulation early in the breeding season. Twenty transitional mares were assigned to one of two treatment groups. Mares in group 1 (n = 10) served as untreated controls, and mares in group 2 (n = 10) were administered 12.5 mg of purified equine follicle-stimulating hormone (eFSH) (Bioniche Animal Health USA, Inc., Athens, Ga) intramuscularly twice daily for a maximum of 15 consecutive days. Mares were considered to be in transition when the diameter of the largest follicle was ≥25 mm. Once one or more follicles >35 mm were detected, eFSH treatment was discontinued and human chorionic gonadotropin was administered intravenously. The percentage of mares ovulating during the 15-day observation period was compared by means of chi-square analysis. The interval to ovulation and the number of ovulations per mare were compared between the two groups by Student t test. In 8 of 10 mares treated with eFSH follicles developed and ovulation occurred during the 15-day observation period, compared with 0 of 10 control mares. Interval from onset of treatment to ovulation was 7.6 ± 2.4 days for these eight mares. The eight mares were treated for an average of 5.2 ± 1.3 days with eFSH. Thus, the eFSH treatment was effective in advancing the first ovulation of the year in transitional mares.  相似文献   

3.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

4.
The purpose of this research was to determine whether treatment with varying doses of recombinant equine follicle stimulating hormone (reFSH) stimulates the development of multiple follicles and ovulations and increases the number of embryos recovered in the mare. Therefore, because reFSH can be cloned in repeatable, sizeable quantities, it could be used as a tool to enhance superovulation in mares. In experiment 1, the number of preovulatory follicles, ovulations, and embryos recovered per flush was greater in the 0.85 mg reFSH group than in the control group; however, the embryo per ovulation rates were similar. Plasma inhibin and estradiol concentrations were greater in treated mares around the time of ovulation as compared with the control group, whereas concentrations of luteinizing hormone remained low throughout the treatment, ovulation, and postovulation. In treated mares, concentrations of follicle stimulating hormone increased during therapy and before ovulation, but decreased postovulation. In experiment 2, varying doses of reFSH (0.35, 0.50, and 0.65 mg) and 12.5 mg of Bioniche equine follicle stimulating hormone (eFSH) increased the number of preovulatory follicles as compared with control group. The greatest number of ovulations was induced by treatment with 12.5 mg eFSH, 0.5 mg reFSH, and 0.65 mg reFSH. The highest number of embryos recovered per flush was found with treatments of eFSH and 0.65 mg reFSH. However, the embryo per ovulation rates were similar in all treatment groups, including the control group. In experiment 3, reFSH (0.5 and 0.85 mg) and eFSH (12.5 mg) given twice daily showed a similar increase in the number of pre-ovulatory follicles and ovulations. A single daily treatment of reFSH (0.85 mg) as well as the twice daily dose of eFSH was determined to increase follicular activity. In conclusion, reFSH was as effective as eFSH in increasing the number of follicles ≥35 mm, ovulation rates, and embryo recovery rates per flush compared with the control group.  相似文献   

5.
The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19°45′45′S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post‐ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35‐mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35‐ to 40‐mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively – one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low‐dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.  相似文献   

6.
Strategies for Using eFSH for Superovulating Mares   总被引:1,自引:0,他引:1  
The standard treatment for superovulation of mares is to administer equine follicle-stimulating hormone (eFSH) for 4 to 5 days to stimulate multiple follicles and human chorionic gonadotropin (hCG) to induce synchronous ovulations. Objectives of this study were: (1) to determine whether a short-term (3-day) eFSH treatment protocol would result in similar ovulation and embryo recovery rates compared with the standard eFSH protocol; (2) to determine the efficacy of a decreasing dose of eFSH (step-down protocol) on ovulation rate and embryo recovery; (3) to compare the efficacy of hCG and recombinant equine luteinizing hormone (reLH) for inducing ovulation in FSH-treated mares; and (4) to compare embryo recovery rates and embryo size when mares are flushed at 6.5 or 7.0 days after ovulation. Forty light-horse mares were used in 2005 (experiment 1) and 20 different mares were used in 2006 (experiment 2). In experiment 1, mares were randomly assigned to one of three treatment groups: (1) untreated controls, (2) standard eFSH treatment (12.5 mg intramuscularly twice daily), and (3) 3-day eFSH treatment. In experiment 2, mares were randomly assigned to one of four treatments: (1) untreated controls, (2) standard eFSH protocol, (3) 3-day eFSH treatment, and (4) step-down eFSH treatment (12.5 mg twice daily day 1, 8.0 mg twice daily day 2, 4.0 mg twice daily day 3). Within each treatment, mares were given either hCG (2,500 IU) or equine LH (750 mg, EquiPure LH; reLH) to induce synchronized ovulations. Embryo recovery was performed either 6.5 or 7.0 days after ovulation. In experiment 1, numbers of preovulatory follicles and ovulations were less for mares in the 3-day treatment group than the standard group, but were greater than for controls. Embryo recovery per flush was higher in the standard group (2.6) than the 3-day eFSH treatment (0.8) or control groups (0.8). In experiment 2, the number of preovulatory follicles and number of ovulations were greater in the standard and 3-day treatment groups than in control and step-down groups. The percent embryo recovery per ovulation and mean embryo grade were similar for all groups; however, the embryo recovery per flush was higher for mares in the standard treatment than controls (1.3 vs 0.6) but was similar to the 3-day (1.1) and step-down (0.8) treatments. Embryo recovery was similar for flushes performed on days 6.5 and 7.0 post-ovulation. The percentage of control mares ovulating within 48 hours in response to hCG or reLH was similar. In contrast, a higher percentage of eFSH-treated mares ovulated within 48 hours in response to reLH than hCG (92% vs 71%). In both years, the 3-day eFSH treatment protocol resulted in a greater number of preovulatory follicles and a greater number of ovulations than untreated controls. Unfortunately, the increased ovulation rate for mares administered eFSH for 3 days did not result in a greater number of embryos recovered per flush in either year. Use of a step-down eFSH treatment protocol resulted in fewer preovulatory follicles, fewer ovulations, and fewer embryos as compared with the standard eFSH treatment. In conclusion, the standard eFSH treatment resulted in a greater embryo recovery rate per cycle than either the 3-day or step-down treatment protocols. Recombinant equine LH was more effective than hCG in causing ovulation in eFSH-treated mares.  相似文献   

7.
A preliminary trial was performed to evaluate the ability of sustained release preparations of estradiol-17β or progesterone plus estradiol-17β to synchronize estrus in cyclic mares. Group 1 mares were treated with a 50 mg intramuscular (IM) injection of sustained release estradiol-17β, while group 2 mares were treated with estradiol plus 1.5 g of sustained release progesterone. All mares received an IM injection of 10 mg of prostaglandin-F2α (PGF2α) 10 days after steroid treatment. Mares were examined by transrectal ultrasonography on Days 1 and 10 of treatment and then at ≤2 day intervals to monitor follicle size. Once a follicle ≥30 mm diameter and uterine edema were detected, 0.5 mg of the GnRH analog histrelin was administered IM. Mares were examined daily thereafter to detect ovulation. Group 1 mares did not exhibit ovulation synchrony (ovulations occurred 12-22 days after steroid treatment), whereas ovulation synchrony was satisfactory in group 2 mares (interval to ovulation being 20.4 ± 1.5 days, range 17-22 days). Using sustained release preparations of progesterone plus estradiol-17β, with PGF2α administered on Day 10, could eliminate the need for daily injections of steroid preparations in oil when synchronizing estrus and ovulation.  相似文献   

8.
The objective of this study was to compare the efficacy of purified equine‐ and porcine‐FSH treatment regimes in mares in early vernal transition. Mares (n = 22) kept under ambient light were examined ultrasonographically per‐rectum, starting January 30th. They were assigned to one of two treatment groups using a sequential alternating treatment design when a follicle ≥ 25 mm was detected. In the eFSH group, mares were treated twice daily with equine‐FSH, and in the pFSH group mares were treated twice daily with porcine‐FSH; treatments were continued until follicle(s) ≥ 35 mm, and 24 h later hCG was administered. Oestrous mares were inseminated with fresh semen and examined for pregnancy on days 11–20 post‐ovulation. In the eFSH group, 11/11 (100%) mares developed follicle(s) ≥ 35 mm, 8/11 (73%) ovulated and 6/8 (75%) conceived. In the pFSH group, 5/11 (45%) developed follicle(s) ≥ 35 mm, 4/11 (36%) ovulated and 3/4 (75%) conceived. Treatment with eFSH resulted in a greater ovarian stimulation; higher number of pre‐ovulatory‐sized follicles, higher number of ovulations and higher number of embryos (p < 0.05). Following ovulation, serum progesterone concentrations were correlated with the number of CLs and supported early embryonic development; maternal recognition of pregnancy occurred in all pregnant mares. We concluded that eFSH can be used to effectively induce follicular growth and ovulation in vernal transitional mares; however, if bred, diagnosis and management of twins’ pregnancies would be required prior to day 16 because of the increased risk of multiple embryos per pregnancy. Conversely, the current pFSH treatment regime cannot be recommended.  相似文献   

9.
Background Induction of multiple ovulations, or superovulation, may potentially increase the efficiency of equine embryo transfer programs. Our objective was to investigate the effects of equine follicle‐stimulating hormone (eFSH) treatment on the success rate of embryo transfer programs in mares. Methods In the research facility of the University of Saskatchewan, Canada, we studied 12 donor mares and 37 recipient mares during the physiological breeding season. Donor mares were used in two consecutive oestrous cycles: the first served as the control cycle and in the second an eFSH regimen was applied (eFSH cycle). In the control cycle, mares were administered human chorionic gonadotropin (hCG) to induce ovulation when a follicle ≥35 mm in diameter was detected by transrectal ultrasonographic examination. In the second oestrous cycle, twice‐daily eFSH treatment was initiated when a follicle ≥25 mm was detected and treatment ceased when a follicle ≥35 mm was present, at which time hCG was administered. All donor mares were artificially inseminated while in oestrus using fresh semen collected from a stallion of proven fertility. At 8 days post‐ovulation, embryos were recovered transcervically and transferred individually to the uterus of a synchronised recipient mare. Results The eFSH treatment stimulated the ovary and resulted in greater numbers of ovulations and recovered embryos; however the recovered embryos tended to have a lower morphological grade than the control embryos, and the recipient pregnancy rate per transferred embryo was lower than anticipated. Conclusion The numbers of recipient pregnancies and foals born that resulted from eFSH treatment were not different from the control.  相似文献   

10.
Soon after Ovuplant™, the sustained-release implant containing the gonadotropin releasing hormone (GnRH) agonist deslorelin, was approved for commercial use in the United States for induction of ovulation in mares, anecdotal field observations were reported that some Ovuplant™—treated mares that did not become pregnant experienced a delayed return to estrus and prolonged inter-ovulatory interval. Although those observations have been subsequently confirmed, further data on how mares respond to Ovuplant™ compared to human chorionic gonadotropin (hCG) during the post-treatment period is needed. The objective of this study was to further evaluate the clinical use of Ovuplant™ by comparing the reproductive performance of commercial broodmares treated with hCG or Ovuplant™. This retrospective study was completed by examining the 1999 reproductive records of 106 mares treated with hCG during 134 estrous cycles and 117 mares treated with Ovuplant™ during 151 estrous cycles. There were no differences (P > 0.10) in follicle size at the time of treatment (39.4 ± 0.5 vs. 38.9 ± 0.5 mm), interval from treatment to ovulation (2.2 ± 0.1 vs. 2.2 ± 0.1 days), proportion of mares that failed to ovulate after treatment (3.0 vs. 4.6 %), or per-cycle pregnancy rate (47.7 vs. 51.4 %) between hCG-and Ovuplant™-treated mares, respectively. The interval from ovulation to return to estrus (25.8 ± 1.3 vs. 15.5 ± 0.6 days) and the inter-ovulatory interval (30.4 ± 1.5 vs. 20.8 ± 0.6 days) were longer (P<0.001) for Ovuplant™-compared to hCG-treated mares, and the proportion of non-pregnant mares that failed to return to estrus within 30 days after ovulation (31.4 vs. 1.5 %) was higher (P<0.001) for Ovuplant™-compared to hCG-treated mares, respectively. For Ovuplant™—treated mares, follicle size at the time of treatment tended (P<0.1) to be smaller for mares that failed to return to estrus within 30 days compared to mares that returned to estrus within 30 days (37.1 ± 1.1 vs. 40.1 ± 0.6 mm, respectively). Also, the average date of ovulation during the calendar year was later (P < 0.05) for Ovuplant™—treated mares that failed to return to estrus within 30 days compared to those that returned to estrus within 30 days (May 15 ± 4 vs. April 30 ± 4 days). The results of this study confirm previous reports that although the ovulatory response and fertility were not different for hCG- and Ovuplant™—treated mares, mares treated with Ovuplant™ that did not become pregnant had a significantly delayed return to estrus and prolonged inter-ovulatory interval. Based on recently published information, it appears this effect is due to Ovuplant™—induced down-regulation of the pituitary gland, which suppresses subsequent follicular growth and development. This study also demonstrated that follicle size and/or season may influence the probability that Ovuplant™—treated mares would experience a delayed return to estrus/ovulation; therefore, further work is needed to determine whether these or other factors are related to this specific outcome following Ovuplant™—treatment.  相似文献   

11.
Attempts to superovulate mares have been disappointing and expensive. Conflicting data exist on the effectiveness of porcine follicle stimulating hormone (pFSH) as a superovulatory treatment for horses. Recently, a recombinant equine FSH (reFSH) has become available with covalently linked alpha and beta subunits, which results in a longer half-life than endogenous FSH. The purpose of this study was to compare doses of pFSH and reFSH for superovulating mares. Twenty-nine mares received injections of 25, 50, 100, or 150 mg pFSH or 0.5 mg reFSH 2 times per day. Mares were used up to three times, with their second reproductive cycle serving as an untreated control. All treated mares were administered cloprostenol on the second day of treatment and given 2,500 IU of human chorionic gonadotropin 24 to 38 hours after the majority of large follicles were >30 mm. Mares with untreated control cycles also received cloprostenol, but deslorelin was used to induce ovulation. No response from superstimulation treatments differed (P > .1) from those of controls; mean ovulations per cycle ranged from 0.85 to 1.31; mean embryo recovery rates ranged from 0.66 to 1.08. Two of the eight mares treated with reFSH failed to ovulate. Porcine FSH was ineffective at inducing multiple ovulations at any dose. Although previous studies of reFSH yielded high ovulation rates, further research is needed to establish optimal protocols and to determine the cause of failed ovulations.  相似文献   

12.
In its first year of commercial availability in the United States, reports from the field indicated that Ovuplant™ (a deslorelin-containing slow-release implant for hastening ovulation in mares) was associated with a delayed return to estrus in mares not becoming pregnant. Supposedly this effect was particularly prevalent in mares subsequently administered PGF to cause luteal regression after embryo collection. The present experiment was conducted 1) to determine if the field observations were repeatable under controlled experimental conditions, and 2) to gather endocrine data that might yield information on the underlying cause(s) of this observation. Twenty-five light horse mares were used. Ovaries of each mare were examined by transrectal ultrasonography daily during estrus until ovulation. Once a follicle >30 mm was detected, the mare received either Ovuplant (treated group; N = 13) at the recommended dosage or a sham injection (controls; N = 12); treatments were administered in a manner to ensure that they were unknown to personnel involved with data collection. On day 7 after ovulation, each mare received a luteolytic injection of PGF. Mares were examined every other day until return to estrus or development of a 30 mm follicle, at which time daily examination was performed until ovulation. Jugular blood samples were collected daily. Two mares receiving Ovuplant did not return to estrus within 30 days and their data were not included in the statistical analyses; in contrast, no control mare exhibited such an extended interovulatory interval. For all other mares receiving Ovuplant, the interval between the first and second ovulations was longer (P = .0001) than that of control mares by an average of 6.2 days. In addition, plasma LH concentrations were lower (P <.05) in the treated mares on days 0 through 4, 9, 11, 18, and 19 after the first ovulation. Plasma FSH concentrations were also lower (P = .017) in treated mares from days 4 to 11 and on days 6 and 5 prior to the second ovulation (P = .005). Differences in progesterone and estradiol were observed but were less consistent than for LH and FSH. Mares receiving Ovuplant had fewer small (P =.026), medium (P = .003) and large (P = .045) follicles prior to the second ovulation. In conclusion, Ovuplant treatment at the recommended dosage decreased follicular activity after ovulation and increased the interovulatory interval in mares short-cycled with PGF. These effects appear to be mediated by a hyposecretion of LH and(or) FSH.  相似文献   

13.
Sixty nonlactating light-horse mares were used to compare the efficacy of hCG, buserelin (a GnRH analog) and luprostiol (a PGF2α analog) for induction of ovulation in cycling mares. Mares were assigned to 1 of 4 treatments: 1) controls; 2) 40 μg buserelin IM at 12 hr intervals during estrus until ovulation; 3) 7.5 mg IM luprostiol; and 4) 3,300 IU hCG. Treatments were given once a mare obtained a ≥35mm follicle and had been in estrus ≥2 days. Both buserelin and hCG shortened (p<0.05) the interval from treatment to ovulation compared to controls; whereas, luprostiol failed to hasten ovulation. Number of follicles ovulated was similar among all 4 groups. Although buserelin and hCG were equal in their ability to induce ovulation, an average of 3.8 injections of buserelin was required for hastening of ovulation.  相似文献   

14.
Synchronization of estrus (SE) in mares has been achieved, but not of ovulation (SO). Progestins followed by PGF2a are useful for SE only. In the two studies reviewed here, SE and SO were attempted by using CIDR-B, an intravaginal (itv) progesterone (1.9 g) releasing device, alone (study 1) or accompanied by estradiol (10 mg) given also itv (study 2). In both studies, Ovuplant™ (OT), an implant containing 2.1 mg of the GnRH analog deslorelin was used for the control of ovulation. Eighty cycling Hanoverian mares, 40 each in studies 1 and 2, received CIDR-B itv for 12 days, with PGF2a given once at CIDR-B removal. In study 1, 15 mares each received OT when the lead follicle had reached 40 mm (A) or on Day 3 of estrus (B); 10 controls received no OT (C). In study 2, E2 was used in addition on Day 0 (CIDR-B insertion) (10 mares; group II), or on Days 0 and 7 (10; group III) or not (20; groups I and IV). Mares in groups I to III received OT as in study 1 (A); group IV (10) remained untreated. Ovaries were examined and blood samples were taken in studies 1 and 2 from all mares in 1, 2 or 4-day intervals, respectively, and concentrations of FSH, LH, progesterone and estradiol were determined by RIA. In study 1, CIDR-B treatment achieved SE, but not SO as shown by a wide spread of days on which follicles were reaching 40 mm; OT treatment assured ovulations in 48 hours in 93.3% of treated mares vs. 44.4% in controls (P<0.05. In study 2, SE was achieved and SO, but only when estradiol was given once (itv) on Day 0 (group II) but not twice on Days 0 and 7 (group III). In both studies, CIDR-B prevented estrus but stimulated follicle growth: 8 mares in study 1 ovulated with CIDR-Bs in place and 2 in trial 2, respectively. Only when estradiol was used together with CIDR-B, follicle growth was retarded (group II) or suppressed (group III: P<0.05 vs. groups I and IV). The pregnancy rate in study 2 from a single breeding at the first estrus was 52.8% with no significant differences between groups. FSH rose until Day 4 or 8 and had dropped sharply at Day 12; after CIDR-B removal FSH rose most quickly in group II, study 2. LH declined slightly until Day 12 and rose thereafter, reaching peak levels by Day 18 or 20, respectively. In both studies, estradiol had dropped slightly by Day 4 but increase steadily thereafter until ovulation had occurred. Preovulatory rise and postovulatory drop was seen earlier in group II, study 2. Values for progesterone had risen uniformly by Day 4, had declined slowly by Day 12 and precipitously in response to PGF2a by Day 14. Treatment of cyclic mares with CIDR-B for 12 days, followed by PGF2a at the day of CIDR-B removal and by Ovuplant™ a deslorelin implant when a follicle had reached 40 mm, resulted in synchronization of estrus. Adding to this scheme a single dose of estradiol (10 mg, intravaginal) on Day 0 resulted also in synchronization of ovulation.  相似文献   

15.
The timing of ovulation is an important component to many equine breeding strategies. The action of luteinizing hormone on ovulation induction has been recognized; however, potential effects of follicle-stimulating hormone (FSH) have been less defined. Objectives of this study were to determine whether (1) mares could be induced to ovulate follicles ≤30 mm; (2) equine FSH (eFSH) has a positive effect on ovulation induction, and (3) ovulation of small follicles would affect embryo recovery. Light-horse mares (n = 12) between 4 and 10 years of age were assigned to treatments when they had a dominant growing follicle with a mean diameter of 24, 28, or 35 ± 2 mm and endometrial edema. Treatments were (1) H35, human chorionic gonadotropin (hCG) at 35 ± 2 mm; (2) F35, eFSH at 35 ± 2 mm; (3) H28, hCG at 28 ± 2 mm; (4) FH28, eFSH and hCG at 28 ± 2 mm; (5) D28, deslorelin (gonadotropin-releasing hormone [GnRH] analog) at 28 ± 2 mm; (6) FH24/H24, hCG or eFSH and hCG at 24 ± 2 mm. Mares’ reproductive tracts were scanned at 24 ± 2-hour intervals after treatment to detect ovulation. Mares were inseminated, and embryos were collected. Numbers of mares that ovulated within 48 ± 2 hours after treatment were: H35, 8/8 (100%); F35, 8/14 (57%); H28, 7/12 (58%); FH28, 9/12 (75%); D28, 3/7 (43%) and FH/H24, 4/14 (29%). The number of mares that ovulated in 48 ± 2 hours for H35 was not different from that for FH28 but was higher (P < .05) than all other groups. Embryo recovery rates, diameters, developmental stages, and morphology scores were not different for mares ovulating 48 hours or less versus more than 48 hours after treatment or among treatment groups. Results of this study demonstrate that follicles ≤30 mm can be induced to ovulate with no effect on embryo recovery or quality, as assessed by stereomicroscopy.  相似文献   

16.
The effect of induction of luteolysis by intramuscular treatment with prostaglandin F2α (PGF) on the frequency of double ovulations and formation of hemorrhagic anovulatory follicles (HAFs) was studied. The PGF (5 mg) was given 10 days after ovulation (n = 47 estrous cycles). No treatment or sham injection was used for control estrous cycles (n = 39). After treatment, the mares were scanned by transrectal ultrasonic imaging every 2 days until the largest follicle reached 25 mm and every day thereafter until the outcome of all follicles of at least 25 mm was determined. The frequency of two ovulations during the posttreatment ovulatory period was greater (P < .03) in the treated group (17%) than in the controls (3%). The combined frequency of two ovulations or one ovulation and one HAF also was greater (P < .002) in the treated group (30% vs. 5%). Equine veterinarians should be aware that PGF induction of luteolysis may increase the frequency of double ovulations or HAFs.  相似文献   

17.
Recent studies on twinning are reviewed. Multiple ovulations were more frequent in thoroughbreds (19%) than in quarter horses (9%) and Appaloosas (8%). The multiple ovulation rate was reduced approximately 50% in foaling mares compared to barren and maiden mares. There was a high degree of repeatability of double ovulations and twin pregnancies within mares and within family lines.Only one embryo was found in each of 23 pituitary extract-treated mares with multiple, synchronous ovulations (<2 days apart) and in each of 39 brood-farm mares with double, synchronous ovulations. Pregnancy rates (number of mares pregnant, regardless of number of embryos/mare) were significantly higher for double, synchronous ovulations than for single ovulations in artificially stimulated mares (58% vs 38%) and in brood-farm mares (83% vs 54%). The results indicated that ova produced by synchronous, double ovulations are viable and fertilizable (indicated by the higher pregnancy rates), but that one of the resulting embryos is eliminated (indicated by the absence of twins).Synchronous, double ovulations were not recorded in association with any of 107 sets of natrually occurring twins. Most (76%) of the twin sets were associated with one detected ovulation. The remaining twins were associated either with one ovulation, but a large unovulated follicle was present at the time of the last examination (10%), or with asynchronous, double estrous ovulations (14%). Twins originated more frequently (P < .05) from asynchronous, double estrous ovulations (9/57) than from synchronous, double ovulations (0/39).Approximately 50% of the mares in which twin embryos were diagnosed rectally before day 31, had 1 foal. However, mares in which twins were recorded as present at day 32–36 and day 40–42 had a single foal in only 17% and 6% of the mares, respectively. The methods used for intervention when twins were diagnosed were unsatisfactory. Complete termination of pregnancy with a prostaglandin or intrauterine flushing resulted in failure to establish a singleton pregancy during the remaining breeding season in 10/11 mares. Attempts to eliminate one embryo resulted in loss of both embryos in 6/7 mares.  相似文献   

18.
Estradiol and progesterone concentrations were evaluated from diestrous embryo transfer recipient mares (5 to 14 days post-ovulation) which were treated with an exogenous hormone regimen. Upon detection of the donor mare's ovulation (0 hours), 10 mg PGF was given to the recipient mare; at 12, 24 and 36 hours 20 mg estradiol cypionate; at 48 hours, 500 mg progesterone in oil and then 22 mg altrenogest at 60, 72 and 96 hours. Altrenogest (22 mg/day) was continued until end of the trial (detection of a fetal heart beat). Embryos were transferred non-surgically 6 or 7 days after the start of treatment.Plasma samples were evaluated over three periods; period 1-between recipient mare ovulation and prior to PGF period 2-between PGF and embryo transfer and period 3-post-transfer. During periods 2 and 3, estradiol was higher (P<.05) for mares which were 10 to 14 days post-ovulation (late diestrous) as compared to mares which were 5 to 9 days post ovulation (mid-diestrous) when treatment began. Progesterone concentrations were higher (P<.05) for the mid-diestrous mares in the same periods. The pregnancy rate was higher for the late diestrous mares than the mid-diestrous mares (58% (7/12) vs 10% (1/10)). However, no difference (P>.05) was detected in estradiol or progesterone in the late diestrous mares which were pregnant or open. During period 2, estradiol was higher (P<.05) in the pregnant than open mares. Whereas, during period 3, progesterone was higher (P<.05) in the open mares.These data suggest that estradiol is important for the establishment of pregnancy in the mare. Furthermore, hormone treatment developed in this study appears to have some potential in synchronization of diestrus mares to be used as embryo recipients.  相似文献   

19.
It is important to get mares pregnant as early as possible after vernal transition and thus, identification signs of impending 1st ovulation of the year are warranted. To identify clinical indicators of an approaching first ovulation of the year, mares were teased with a stallion for oestrous detection starting January 3 and subjected to ultrasonographic examination. Day of first appearance of uterus oedema, follicular wall invagination, intrafollicular echogenicity, double contour of the follicle wall, increase in granulosa thickness, follicular wall hyperechogenicity and appearance of pear‐shaped follicles was registered, as well as follicle diameter and number. Seventy per cent of the mares had anovulatory oestrous periods of 4.6 ± 3.6 days, with an interoestroual interval of 12.5 ± 12.2 days. Number of anovulatory oestruses per mare was 2.4 ± 2.3. Uterine oedema occurred in 77% of the mares, 32.4 ± 25.6 days before ovulation. Invagination of the follicular wall appeared in 44.4% of the animals, 24.5 ± 18.4 days before ovulation. Intrafollicular echogenicity was seen in all mares and double contour of the follicle was seen in 77% of the animals. Both last two characteristics appeared 1–72 days before ovulation. Increased thickness of the granulosa occurred in 66% of the mares, 1–19 days before ovulation. Pear‐shaped follicles and follicular wall hyperechogenicity were detected 3 or less days before the first ovulation, in 44.4% and 55.5% of mares, respectively. Mean number of follicles >15 mm decreased at least 16 days before ovulation. We concluded that no isolated characteristic was a reliable indicator. However, increase in granulosa thickness, formation of a pear‐shaped follicle and follicular wall hyperechogenicity, associated with the reduction of the number of follicles >15 mm in diameter to <3, resulted in the first ovulation of the year in 44–67% of the transitional mares, 1–19 days after the characteristics appeared.  相似文献   

20.
Equine chorionic gonadotropin (eCG), obtained from pregnant mares, is used for assisted reproductive technologies in laboratory rodents and livestock. The objective of the present study was to use equine follicle-stimulating hormone (eFSH) to increase the incidence of twin pregnancies, through multiple ovulations, and increase eCG. Nineteen light horse–type mares were enrolled in the study. The control group (n = 9) was bred with fresh or cooled semen and given human chorionic gonadotropin (hCG) at the time of breeding. The second group (n = 10) was given 12.5 mg of eFSH intramuscularly twice a day beginning 5–7 days after ovulation. Prostaglandin F2α was administered intramuscularly the second day of eFSH treatment. Treatment with eFSH continued until follicles were >35 mm in diameter, and mares were then given no treatment for 36 hours. The mares were then bred with fresh or cooled semen from the same stallion as the control group and given hCG. Blood samples were taken weekly from day 35 to day 105 after ovulation. Serum concentration of eCG was obtained, and data were analyzed with multivariate analysis using the mixed procedure. Significance was set at P < .05. Data were combined for all mares carrying twins and compared with those carrying singletons. The group of mares carrying twins had higher peak concentrations of eCG and higher values for area under the curve compared with mares carrying singletons (P < .05). These results suggest inducing twins could be a method used to increase eCG production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号