首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Distillers grains, a coproduct of ethanol production from cereal grains, are composed principally of the bran, protein, and germ fractions and are commonly supplemented in ruminant diets. The objective of this study was to assess the effect of feeding wet distillers grains with solubles (WDGS) and monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne and commensal bacteria in feedlot cattle. Cattle were fed 0 or 25% WDGS in steam-flaked corn-based diets with the addition of no antimicrobials, monensin, or monensin and tylosin. Fecal samples were collected from each animal (n = 370) on d 122 and 136 of the 150-d finishing period and cultured for Escherichia coli O157. Fecal samples were also pooled by pen (n = 54) and cultured for E. coli O157, Salmonella, commensal E. coli, and Enterococcus species. Antimicrobial resistance was assessed by determining antimicrobial susceptibilities of pen bacterial isolates and quantifying antimicrobial resistance genes in fecal samples by real-time PCR. Individual animal prevalence of E. coli O157 in feces collected from cattle fed WDGS was greater (P < 0.001) compared with cattle not fed WDGS on d 122 but not on d 136. There were no treatment effects on the prevalence of E. coli O157 or Salmonella spp. in pooled fecal samples. Antimicrobial susceptibility results showed Enterococcus isolates from cattle fed monensin or monensin and tylosin had greater levels of resistance toward macrolides (P = 0.01). There was no effect of diet or antimicrobials on concentrations of 2 antimicrobial resistance genes, ermB or tetM, in fecal samples. Results from this study indicate that WDGS may have an effect on the prevalence of E. coli O157 and the concentration of selected antimicrobial resistance genes, but does not appear to affect antimicrobial susceptibility patterns in Enterococcus and generic E. coli isolates.  相似文献   

2.
Inclusion of distillers grains (DG) in cattle diets has been shown to increase fecal shedding of Escherichia coli O157:H7. It is hypothesized that altered gut fermentation by DG may be responsible for the positive association. Therefore, feed additives affecting ruminal or hindgut fermentation of DG also may affect fecal shedding of E. coli O157:H7. The objectives of the study were to evaluate effects of monensin (33 or 44 mg/kg of DM), supplemental urea (0, 0.35, or 0.70% of DM), and ractopamine (0 or 200 mg/steer daily administered during the last 42 d of finishing) in a steam-flaked corn grain-based diet containing 30% wet sorghum DG on fecal shedding of E. coli O157:H7. Seven hundred twenty crossbred beef steers, housed in 48 pens (15 steers/pen), were assigned to dietary treatments in a randomized complete block design with a 2 × 3 × 2 factorial treatment arrangement. Fresh pen floor fecal samples (10 per/pen) were collected every 2 wk for 14 wk (July through November) and cultured for E. coli O157:H7. Isolation of E. coli O157:H7 was by selective enrichment of fecal samples in an enrichment broth, immunomagnetic separation, followed by plating onto a selective medium. Samples that yielded sorbitol-negative colonies, which were positive for indole production, O157 antigen agglutination, and contained rfbE, fliC, and stx2 were considered positive for E. coli O157:H7. Fecal prevalence data were analyzed as repeated measures using negative binomial regression to examine effects and interactions of sampling day, urea, monensin, and ractopamine. Mean fecal prevalence of E. coli O157:H7 was 7.6% and ranged from 1.6 to 23.6%. Cattle fed monensin at 44 mg/kg of feed had less (P = 0.05) fecal E. coli O157:H7 prevalence than cattle fed 33 mg/kg (4.3 vs. 6.8%). Although the reason for the reduction is not known, it is likely because of changes in the microbial ecosystem induced by the greater amount of monensin in the hindgut. Supplemental urea at 0.35 or 0.70% had no effect (P = 0.87) on fecal shedding of E. coli O157:H7. Fecal prevalence of E. coli O157:H7 were 5.3, 5.7, and 5.9% for groups fed 0, 0.35, and 0.7% urea, respectively. The inclusion of ractopamine at 0 or 200 mg/(animal?d) had no effect (P = 0.89) on fecal prevalence of E. coli O157:H7 (4.4 vs. 4.0%). Additional research is needed to confirm the reduction in fecal shedding of E. coli O157:H7 in cattle fed monensin at 44 mg/kg of feed compared with cattle fed 33 mg/kg of feed.  相似文献   

3.
The objectives were to determine the effects of short-term feeding of a toxic endophyte (Neotyphodium coenophialum)-infected tall fescue seed (Festuca arundinacea, cultivar 'Kentucky 31') on fecal shedding and intestinal concentrations of Escherichia coli O157:H7 and the concentrations of prolactin, cortisol, and NEFA in experimentally inoculated ewes. Twelve ewes (mean BW = 46 +/- 2 kg) were fed a diet containing either high endophyte-infected (HI-E) or low endophyte-infected (LO-E) tall fescue seed for 7 d. Each diet consisted of 50% (as-fed basis) tall fescue seed. Ewes were experimentally inoculated with antibiotic resistance-selected E. coli O157:H7 on d 1 of the feeding treatment, and fecal shedding of inoculated pathogens was monitored daily on d 2 to 6. On d 7, ewes were weighed and euthanized, and tissues and contents were sampled from the ileum, cecum, and rectum for quantitative enumeration of E. coli O157:H7. Urine was collected at euthanization to determine total ergot alkaloid concentrations. Ewes fed HI-E had lower (P < 0.001) DMI than did ewes fed LO-E (0.8 and 1.6 +/- 0.1 kg/d of DMI for HI-E and LO-E ewes, respectively); consequently, there was a tendency (P = 0.06) for HI-E ewes to lose 0.3 +/- 0.4 kg of BW/d and LO-E ewes to gain 0.2 +/- 0.4 kg of BW/d during the 7 d. Urinary ergot alkaloids were increased (P < 0.001) in ewes fed HI-E (47.8 +/- 9.4 ng/mg of creatinine) compared with those fed LO-E (6.2 +/- 9.4 ng/mg of creatinine). Prolactin tended (P = 0.06) to be decreased in ewes fed HI-E (7.2 +/- 7.0 ng/mL) compared with those fed LO-E (27.7 +/- 7.0 ng/mL). Fecal shedding of E. coli O157:H7 tended (P = 0.06) to be increased in HI-E ewes [5.4 cfu (log10)/g of feces] compared with LO-E ewes [4.5 cfu (log10)/g of feces]. The population of E. coli O157:H7 in luminal contents from the ileum, cecum, and rectum did not differ (P > 0.36) between treatments. Treatment did not influence (P = 0.30) the occurrence of E. coli O157:H7 in cecal or rectal tissues; however, ileal tissues from HI-E ewes tended (P = 0.12) to have an increased incidence of E. coli O157:H7. Concentrations of NEFA tended (P = 0.12) to be greater in HI-E ewes than in LO-E ewes, whereas cortisol was similar (P = 0.49) for HI-E and LO-E ewes. We conclude that short-term feeding of HI-E tall fescue seed may alter the concentrations of prolactin and NEFA, and may increase fecal shedding of E. coli O157:H7 in experimentally inoculated ewes.  相似文献   

4.
The objective of this study was to compare the concentration and duration of fecal shedding of Escherichia coli O157:H7 between calves fed milk replacer with or without antibiotic (oxytetracycline and neomycin) supplementation. Eighteen 1-wk-old Holstein calves were orally inoculated with a strain of E. coli O157:H7 (3.6 x 10(8) cfu/calf) made resistant to nalidixic acid (NA). Rectal samples were obtained three times weekly for 8 wk following oral inoculation. Fecal shedding of NA-resistant E. coli O157:H7 was quantified by direct plating or detected by selective enrichment procedure. Eight weeks after inoculation, calves were killed, necropsied, and tissues (tonsils, retropharyngeal and mesenteric lymph nodes, and Peyer's patches) and gut contents (rumen, omasum, abomasum, ileum, cecum, colon, and rectum) were sampled to quantify or detect NA-resistant E. coli O157:H7. The percentage of calves shedding NA-resistant E. coli O157:H7 in the feces in the antibiotic-fed group was higher (P < 0.001) early in the study period (d 6 and 10) compared with the control group fed no antibiotics. There was no difference between treatment and control groups in the concentration of E. coli O157 in feces that were positive at quantifiable concentrations. A comparison of the duration of fecal shedding between treated and untreated calves showed no significant difference between groups. At necropsy, E. coli O157:H7 was recovered from the rumen and omasum of one calf in the control group and from retropharyngeal lymph node and Peyer's patch of two calves in the antibiotic group. Supplementation of milk replacer with antibiotics may increase the probability of E. coli O157:H7 shedding in dairy calves, but the effect seems to be of low magnitude and short duration.  相似文献   

5.
Three 3-month-old Japanese Black calves were experimentally infected with Escherichia coli O157:H7 to define the magnitude (CFU/g) and duration of fecal shedding of the organism. In two of the three calves, fecal shedding of E. coli O157:H7 ceased in 5 and 9 weeks. The remaining calf continued shedding E. coli O157:H7 for more than 31 weeks, and the magnitude of the shedding ranged from 10(1) to 10(4) CFU/g of feces. The possibility is suggested that a percentage of animals naturally infected with E. coli O157:H7 on farms may become long-term shedders, transmitting the organism to other animals in the herd and to the proximate environment.  相似文献   

6.
In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.  相似文献   

7.
Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95% CI, 0.007% to 1.5%) for Salmonella.  相似文献   

8.
Feed has been reported as a vehicle for transmission of Salmonella enterica in cattle and several lines of evidence suggest that feed can be a vehicle for transmitting Escherichia coli O157:H7 as well. To show whether microbial contamination of feeds could contribute to the populations of S. enterica and E. coli O157:H7 on a farm, we compared isolates from feed samples to bovine fecal isolates from the same farm using pulsed-field gel electrophoresis (PFGE). Four of 2365 component feed samples (0.2%) and 1 of 226 feed mill samples (0.4%) were positive for E. coli O157:H7. Twenty of 2405 (0.8%) component feed samples and none of 226 feed mill samples were positive for Salmonella. PFGE profiles from E. coli O157:H7 isolated from a component feed sample closely resembled that from a fecal isolate collected later from the same farm, and a similar observation was made of a Salmonella Tyhpimurium isolate from component feed on another farm. There were indistinguishable PFGE profiles from component feed Salmonella Tyhpimurium DT104 isolates and fecal isolates from the same farm. These results provide evidence for a role of cattle feed in transmission of E. coli O157:H7; S. enterica; cattle-bacteria.  相似文献   

9.
OBJECTIVE: To determine the prevalence of fecal shedding of Escherichia coli O157:H7 in white-tailed deer (Odocoileus virginianus) with access to cattle pastures. DESIGN: Survey study. SAMPLE POPULATION: 212 fecal samples from free ranging white-tailed deer. PROCEDURE: Fresh feces were collected on multiple pastures from 2 farms in north central Kansas between September 1997 and April 1998. Escherichia coli O157:H7 was identified by bacterial culture and DNA-based methods. RESULTS: Escherichia coli O157:H7 was identified in 2.4% (5/212) of white-tailed deer fecal samples. CONCLUSIONS AND CLINICAL RELEVANCE: There is considerable interest in the beef industry in on-farm control of E coli O157:H7 to reduce the risk of this pathogen entering the human food chain. Results of our study suggest that the design of programs for E coli O157:H7 control in domestic livestock on pasture will need to account for fecal shedding in free-ranging deer. In addition, the results have implications for hunters, people consuming venison, and deer-farming enterprises.  相似文献   

10.
The aims of the study were to determine the prevalence of enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) and other Shiga toxin-producing E. coli (STEC) in feces of white veal calves in an operation in Ontario, to evaluate exposure of the calves to EHEC O157, and to investigate the milk replacer diet and antimicrobial resistance as factors that might influence the prevalence of EHEC O157. Feces from three cohorts of 20-21 calves were collected weekly for 20 weeks and processed for isolation of EHEC O157:H7 and detection of STEC by an ELISA. Exposure to EHEC O157 was also investigated by measuring IgG and IgM antibodies to the O157 lipopolysaccharide (O157 Ab) in sera by ELISA. The prevalences of EHEC O157 were 0.17% of 1151 fecal samples and 3.2% of 62 calves, and for STEC were 68% of 1005 fecal samples and 100% of 62 calves. Seroconversion to active IgG and IgM O157 Ab responses in some calves was not associated with isolation of EHEC O157. The milk replacer contained low levels of antibodies to EHEC antigens and without antimicrobial drugs, it did not inhibit the growth of EHEC O157 in vitro. Two E. coli O157:H7 that were isolated were totally drug sensitive whereas 60 commensal E. coli isolates that were examined were highly resistant. Antibodies in milk replacer that might be protective in vivo, and susceptibility to antimicrobial agents in the milk replacer may contribute to the low prevalence of EHEC O157 in white veal calves.  相似文献   

11.
To assess the duration of fecal shedding upon initial infection, the duration of shedding after subsequent re-infection and the effects of dietary restriction and antibiotic treatment on shedding recrudescence, four, one-week-old calves were orally inoculated on three separate occasions with 5x10(8) cfu of Escherichia coli O157:H7 strain 86-24 Nal-R. Fecal shedding was followed by serial culture three times weekly. Following the first inoculation, the calves shed E. coli O157:H7 in their feces for a mean of 30 days, with a range of 20 to 43 days. Following the second and third inoculations, the calves shed E. coli O157:H7 in their feces for 3-8 days. In each of the three inoculations, feed was withheld from the calves for 24 h after they had become fecal culture negative. Two calves resumed shedding, one for 1 day and the other for 4 days, after food was withheld after the third inoculation, but not in the first two inoculations. In the third inoculation, one calf resumed shedding for one day after treatment with oxytetracycline. No E. coli O157:H7 strain 86-24 Nal-R was found in the calves at necropsy. These calves did not exhibit persistent low-level shedding, and did not appear to be persistently colonized with E. coli O157:H7.  相似文献   

12.
Cattle have been recognized as a principal reservoir of Escherichia coli O157:H7. This organism appears to be confined to the gastrointestinal tract and is shed in feces. A probiotic product containing lactic acid-producing Streptococcus bovis LCB6 and Lactobacillus gallinarum LCB 12 isolated from adult cattle was developed, and a preliminary experiment was conducted to evaluate its effect on the elimination of E. coli O157 from experimentally infected calves. Eight 4-month-old Holstein calves were orally challenged with E. coli O157 and the probiotic product was administered against four calves continued fecal shedding of E. coli O157 by the 7th day after infection. Fecal shedding of E. coli O157 was completely inhibited and re-shedding was not detected in any of the animals. Remarkable increase of VFAs, especially that of acetic acid in feces after the administration of probiotic bacteria correlated with the diminution of E. coli O157. Four calves that had spontaneously ceased fecal shedding of E. coli O157 by the 7th day exhibited a high concentration of VFAs in feces before and after experimental infection. Although our results are preliminary and obtained from calves under limited conditions, the possible application of probiotic product to reduce fecal shedding of E. coli O157 from cattle is suggested.  相似文献   

13.
OBJECTIVE: To evaluate fecal shedding of Giardia duodenalis, Cryptosporidium parvum, Salmonella organisms, and Escherichia coli O157:H7 from llamas in California with respect to host factors and management practices. ANIMALS: 354 llamas from 33 facilities. PROCEDURE: Fecal specimens were collected and examined for G. duodenalis and C. parvum by means of immunofluorescent microscopy. Salmonella organisms were cultured by placing feces into selenite enrichment broth followed by selective media. Escherichia coli O157:H7 was cultured by use of modified tryptocase soy broth followed by sorbitol MacConkey agar, with suspect colonies confirmed by means of immunofluorescent microscopy. RESULTS: 12 of 354 fecal specimens (3.4%) had G. duodenalis cysts. Younger llamas (crias) were more likely to be shedding cysts, compared with older llamas. Farm-level factors that increased the risk of shedding were large numbers of yearlings on the property (> 10), smaller pen sizes, large numbers of crias born during the previous year (> 10), and large pen or pasture populations (> 20). None of the 354 fecal specimens had C. parvum oocysts. Seventy-six (from 7 facilities) and 192 (from 22 facilities) llamas were tested for Salmonella organisms and E. coli O157:H7, respectively. All fecal specimens had negative results for these bacteria. CONCLUSIONS AND CLINICAL RELEVANCE: Shedding of G. duodenalis was primarily limited to crias 1 to 4 months old. Llamas from properties with large numbers of crias born in the previous year, resulting in large numbers of yearlings in the current year, were at greater risk of infection. In addition, housing llamas in smaller pens or pastures and managing llamas and crias in large groups also increased the risk of G. duodenalis shedding.  相似文献   

14.
A feedlot trial was conducted to assess the efficacy of an Escherichia coli O157:H7 vaccine in reducing fecal shedding of E. coli O157:H7 in 218 pens of feedlot cattle in 9 feedlots in Alberta and Saskatchewan. Pens of cattle were vaccinated once at arrival processing and again at reimplanting with either the E. coli O157:H7 vaccine or a placebo. The E. coli O157:H7 vaccine included 50 microg of type III secreted proteins. Fecal samples were collected from 30 fresh manure patties within each feedlot pen at arrival processing, revaccination at reimplanting, and within 2 wk of slaughter. The mean pen prevalence of E. coli O157:H7 in feces was 5.0%; ranging in pens from 0% to 90%, and varying significantly (P < 0.001) among feedlots. There was no significant association (P > 0.20) between vaccination and pen prevalence of fecal E. coli O157:H7 following initial vaccination, at reimplanting, or prior to slaughter.  相似文献   

15.
OBJECTIVE: To describe the frequency and distribution of Escherichia coli O157:H7 in the feces and environment of cow-calf herds housed on pasture. SAMPLE POPULATION: Fecal and water samples for 10 cow-calf farms in Kansas. PROCEDURE: Fecal and water samples were obtained monthly throughout a 1-year period (3,152 fecal samples from 2,058 cattle; 199 water samples). Escherichia coli O157:H7 in fecal and water samples was determined, using microbial culture. RESULTS: Escherichia coli O157:H7 was detected in 40 of 3,152 (1.3%) fecal samples, and 40 of 2,058 (1.9%) cattle had > or = 1 sample with E coli. Fecal shedding by specific cattle was transient; none of the cattle had E coli in more than 1 sample. Significant differences were not detected in overall prevalence among farms. However, significant differences were detected in prevalence among sample collection dates. Escherichia coli O157:H7 was detected in 3 of 199 (1.5%) water samples. CONCLUSIONS AND CLINICAL RELEVANCE: Implementing control strategies for E coli O157:H7 at all levels of the cattle industry will decrease the risk of this organism entering the human food chain. Devising effective on-farm strategies to control E coli O157:H7 in cow-calf herds will require an understanding of the epidemiologic characteristics of this pathogen.  相似文献   

16.
Distillers dried grains with solubles (DDGS) are a coproduct of the ethanol industry and are often used as a replacement for grain in livestock production. Feeding corn DDGS to cattle has been linked to increased fecal shedding of Escherichia coli O157:H7, although in Canada, DDGS are often produced from wheat. This study assessed the effects of including 22.5% wheat or corn DDGS (DM basis) into barley-based diets on performance, carcass characteristics, animal health, and fecal E. coli O157:H7 shedding of commercial feedlot cattle. Cattle (n = 6,817) were randomly allocated to 10 pens per treatment group: WDDGS (diets including 22.5% wheat DDGS), CDDGS (diets including 22.5% corn DDGS), or CTRL (barley substituted for DDGS). Freshly voided fecal pats (n = 588) were collected and pooled monthly for fecal pH measurement and screened for naturally occurring E. coli O157:H7 by immunomagnetic separation (IMS) and direct plating (DP). Hide swabs (n = 367) were collected from randomly selected cattle from each pen before slaughter. Pen-floor fecal samples (n = 18) were collected from treatment groups at entry to the feedlot (<14 d on the finishing diet) and after adapting to the finishing diet for ≥14 d, inoculated (10(9) cfu of a 5 strain naldixic acid-resistant E. coli O157:H7 mixture), incubated (20°C) and evaluated weekly (IMS and DP) to assess fecal E. coli O157:H7 persistence. The WDDGS group had 3.0% poorer ADG (P = 0.007), 5.3% poorer G:F (P < 0.001), and a decreased proportion of Canada Quality Grade AAA carcasses (P = 0.022) compared with CTRL cattle. The CDDGS group had a similar ADG (P = 0.06), a decreased proportion of Canada Yield Grade (YG) 1 (P < 0.001), and greater proportions of Canada YG 2 (P = 0.003) and YG 3 (P < 0.001) carcasses compared with the CTRL group. There were no differences among groups in any of the animal health parameters assessed. Inclusion of DDGS in cattle finishing diets had no effect on fecal shedding (P = 0.650) or persistence (P = 0.953) of E. coli O157:H7. However, feces from cattle on starter diets <14 d had longer persistence of E. coli O157:H7 (week) than cattle on finishing diets ≥14 d (P < 0.003). Inclusion of DDGS in feedlot diets depends on commodity pricing relative to that of barley and for WDDGS must also include the risk of feedlot performance and carcass grading disadvantages. Feeding cattle barley based-diets with 22.5% corn or wheat DDGS did not affect fecal shedding of E. coli O157:H7.  相似文献   

17.
Manipulation of cattle diets has been proposed as a possible preharvest control measure for Escherichia coli O157. Altering hindgut fermentation through diet changes may be a means to reduce fecal shedding of E. coli O157. In Exp. 1, the objective was to determine whether fecal shedding of E. coli O157 was related to fecal starch concentration. Beginning on d 20, and every week thereafter until d 61, steers in 54 pens (6 to 7 steers per pen) were sampled (n = 122) by fecal collection and rectoanal mucosal swabs (RAMS) for E. coli O157 and fecal starch concentration determinations. Escherichia coli O157 prevalence was 3.3% in fecal samples, 4.1% as measured by RAMS, and 4.9% by fecal or RAMS samples. Steers positive for E. coli O157 contained 21% more (P < 0.05) fecal starch than steers that were negative for E. coli O157. In Exp. 2, we attempted to alter the concentration of starch escaping rumen fermentation by feeding finishing diets based on steam-flaked corn (SFC) and dry-rolled corn (DRC) to 30 heifers prescreened for being culture positive for fecal E. coli O157. Beginning on d 13, heifers were sampled (feces and RAMS) weekly to monitor fecal pH and starch concentration, and prevalence of E. coli O157. Prevalence of E. coli O157 remained above 30% for the first 13 d, but declined (P < 0.05) over the entire 7-wk period. Based on RAMS, the prevalence of E. coli O157 tended to be greater (P = 0.08) for heifers fed SFC than for those fed the DRC diet. After d 20, heifers fed DRC had greater (P < 0.05) fecal starch and lower (P < 0.05) fecal pH than heifers fed SFC. Fecal pH was negatively correlated (r = - 0.34; P < 0.05; n = 143) with fecal starch concentration. Fecal starch concentration and pH were not different (P > 0.05) for heifers that were positive or negative for E. coli O157. Our data suggest that fecal shedding of E. coli O157 was not related to fecal pH or starch concentration in cattle fed grain-based diets.  相似文献   

18.
Escherichia coli O157:H7 is an important food-borne pathogen and cause of hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are an important reservoir of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7; however, basic information about the bovine immune responses to important bacterial colonization factors resulting from infection has not been reported. The serum and fecal IgG and IgA antibody responses of adult cattle to E. coli O157:H7 intimin, translocated intimin receptor (Tir), E. coli-secreted proteins (Esp)A, EspB and O157 lipopolysaccharide (LPS) in response to infection were determined. All animals were seropositive for all five antigens prior to inoculation, with antibody titers to EspB and O157 LPS significantly higher (P<0.05) than those to Tir, intimin and EspA. After inoculation, the cattle became colonized and developed significant increases in their serum antibody titers to intimin, Tir, EspB, EspA and O157 LPS (P<0.05); however, by 42 days post-inoculation the titers to all except EspB were on the decline. In contrast, pre- and post-inoculation fecal IgG and IgA antibodies to these same antigens were not detected (<1:5). These results indicate that cattle respond serologically to E. coli O157:H7 type III secreted proteins, intimin and O157 LPS during the course of infection and the response is correlated with the extent of fecal shedding.  相似文献   

19.
To assess the effect of pooling fecal samples on the sensitivity of detection of E. coli O157:H7, 12 calves, inoculated orally with 10(8)cfu per calf of nalidixic acid resistant E. coli O157:H7, were used to provide positive fecal samples. After inoculation, calves were sampled twice weekly. Negative fecal samples were from calves at a local dairy. Samples from inoculated calves were incubated without pooling or were mixed with known negative fecal samples in a 1:4 ratio or a 2:3 ratio (positive:negative) for detection of E. coli O157:H7. Samples were enriched 6h in Gram negative broth with vancomycin, cefixime, and cefsoludin, underwent immunomagnetic separation with Dynabeads, and were plated onto sorbitol MacConkey agar with cefixime, and tellurite (SMACct). Morphologically typical colonies were plated onto blood agar, incubated overnight at 37 degrees C and an indole test was performed on each colony. Indole positives colonies were plated on SMAC agar with 20 microg/ml nalidixic acid (SMACnal). Colonies that grew on SMACnal were confirmed by O157 agglutination. Sensitivity of detection in non-pooled samples was 77%. Samples pooled 1:4 and 2:3 with negative samples were 55 and 52% sensitive, respectively. Pooling decreased sensitivity of detection for E. coli O157:H7 in bovine fecal samples (P<0.01). A deterministic binomial probability model was developed to assess the probability of detecting pens of cattle shedding E. coli O157 using a pooling protocol or individual samples. Pooling decreased sensitivity of detection at low pen prevalence compared to individual samples but was similar at high prevalence.  相似文献   

20.
The effects of pH, acetate, propionate, or butyrate concentration, and diet on acid resistance of fecal Escherichia coli and E. coli O157:H7 were determined by in vitro and in vivo experiments. The pH tested was from 4.0 to 8.0, and the VFA concentrations tested were 0 to 100 mM. The E. coli O157:H7 used was strain 505B. In an in vivo study, cattle were fed a grain-based diet, then either not switched or switched to a grain-based diet with 3% added calcium carbonate or two fiber-based diets (soybean hulls or hay). Acid resistance was expressed as viability after acid-shock at pH 2.0 for 1 h and 4 h for fecal E. coli and E. coli O157:H7, respectively. Enumeration methods used were multitube fermentation, agar plate, and petri-film methods. The E. coli O157:H7 was not found in continuous culture inocula or in vivo samples. The viability of fecal E. coli decreased linearly (P < 0.01) as the culture pH increased, and viability of E. coli O157:H7 was highest (P < 0.01) when cultivated at pH 6.0. The viability of fecal E. coli and E. coli O157:H7 showed quadratic responses (P < 0.05) as acetate and butyrate concentrations increased at pH 7.2, with maximal acid resistance at 20 and 12 mM, respectively. As propionate concentration increased, the acid resistance was not different (P > 0.05) for fecal E. coli. Acid resistance of E. coli was induced by acetate and butyrate, even though the environmental pH was near neutral. Similar results were measured in the in vivo study, where viability after acid shock was more dependent on VFA concentration than on pH. Increasing the dietary calcium carbonate concentration also increased (P < 0.05) acid resistance of fecal E. coli. Results from these studies demonstrated that culture pH and VFA affect acid resistance of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号