首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Four experiments were conducted to examine the effect of porcine circovirus type 2 (PCV2) vaccination on the response of growing and finishing pigs (PIC 337 × 1050) to increasing dietary Lys. Experiments 1 and 2 evaluated 38- to 65-kg gilts and barrows, respectively, and Exp. 3 and 4 evaluated 100- to 120-kg gilts and barrows, respectively. Gilts and barrows were housed separately in different barns. Treatments were allotted in a completely randomized design into 2 × 4 factorials with 2 PCV2 treatments (PCV2-vaccinated and nonvaccinated) and 4 standardized ileal digestible (SID) Lys:ME ratios (2.24, 2.61, 2.99, and 3.36 g/Mcal in Exp. 1 and 2 and 1.49, 1.86, 2.23, and 2.61 g/Mcal in Exp. 3 and 4) within each experiment. There were 5 pens per treatment. At the start of Exp. 1 and 2, there were more pigs per pen (P < 0.001) in vaccinated pens because vaccinated pigs had a greater survival rate than nonvaccinated pigs, and this increase was maintained throughout the experiments. Removal rate approached 30% in nonvaccinated barrows and more than 20% in nonvaccinated gilts. Observation suggested that the removals were largely due to PCV2-associated disease. No PCV2 vaccination × SID Lys:ME ratio interactions (P > 0.10) were observed in any of the 4 studies. In Exp. 1 and 2, PCV2-vaccinated pigs had increased (P < 0.001) ADG compared with nonvaccinated pigs. The growth response was primarily due to increases in ADFI, which suggests that vaccinated pigs have a greater Lys requirement (g/d) than nonvaccinated pigs. In Exp. 1, increasing the SID Lys:ME ratio increased (quadratic; P < 0.04) ADG and G:F, with pigs fed the 2.99 g/Mcal ratio having the greatest ADG and G:F. In Exp. 2, increasing the SID Lys:ME ratio improved (linear; P < 0.001) G:F. In Exp. 3, ADG and G:F increased (P < 0.05) in a quadratic manner as the SID Lys:ME ratio fed increased. In Exp. 4, increasing the SID Lys:ME ratio increased ADG (linear; P < 0.001) and G:F (quadratic; P = 0.03). Although PCV2 vaccination improved growth, the corresponding increase in ADFI did not increase the optimal SID Lys:ME ratio for growing and finishing barrows and gilts.  相似文献   

2.
Two hundred sixteen crossbred barrows and gilts (84.3 kg BW) were used to test the effects of dietary energy density and lysine:energy ratio (Lys:ME) on the performance, carcass characteristics, and pork quality of finishing pigs fed 10 ppm ractopamine. Pigs were blocked by BW and gender, allotted to 36 pens (six pigs per pen), and pens were assigned randomly within blocks to dietary treatments (as-fed basis) arranged in a 2 x 3 factorial design, with two levels of energy (3.30 or 3.48 Mcal/kg) and three Lys:ME (1.7, 2.4, or 3.1 g lysine/Mcal) levels. Pigs were fed experimental diets for 28 d, and weights and feed disappearance were recorded weekly to calculate ADG, ADFI, and G:F. Upon completion of the feeding trial, pigs were slaughtered and carcass data were collected before fabrication. During carcass fabrication, hams were analyzed for lean composition using a ham electrical conductivity (TOBEC) unit, and loins were collected, vacuum-packaged, and boxed for pork quality data collection. Energy density had no (P > 0.22) effect on ADG or ADFI across the entire 28-d feeding trial; however, pigs fed 3.48 Mcal of ME were more (P < 0.02) efficient than pigs fed 3.30 Mcal of ME. In addition, ADG and G:F increased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. Carcasses of pigs fed 3.48 Mcal of ME were fatter at the last lumbar vertebrae (P < 0.08) and 10th rib (P < 0.04), resulting in a lower (P < 0.03) predicted fat-free lean yield (FFLY). Conversely, 10th-rib fat thickness decreased linearly (P = 0.02), and LM depth (P < 0.01) and area (P < 0.01) increased linearly, with increasing Lys:ME. Moreover, FFLY (P < 0.01) and actual ham lean yield (P < 0.01) increased as Lys:ME increased in the diet. Dietary energy density had no (P > 0.19) effect on pork quality, and Lys:ME did not (P > 0.20) affect muscle pH, drip loss, color, and firmness scores. Marbling scores, as well as LM lipid content, decreased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. There was a linear (P < 0.01) increase in shear force of cooked LM chops as Lys:ME increased in the finishing diet. Results indicate that 3.30 Mcal of ME/kg (as-fed basis) is sufficient for optimal performance and carcass leanness in pigs fed ractopamine. The Lys:ME for optimal performance and carcass composition seems higher than that currently used in the swine industry; however, feeding very high Lys:ME (> 3.0 g/Mcal, as-fed basis) to ractopamine-fed pigs may result in decreased marbling and cooked pork tenderness.  相似文献   

3.
Three experiments were conducted to determine the effects of increasing dietary standardized ileal digestible (SID) Lys on growing and finishing gilts. Diets in all 3 experiments were corn-soybean meal-based and contained 0.15% l-Lys?HCl and 3% added fat from choice white grease. Desired SID Lys concentrations were achieved by altering levels of corn and soybean meal in the diet. Each experiment consisted of 6 treatments with 7 pens per treatment and approximately 27 gilts (PIC 337 × 1050) per pen. In Exp. 1, 1,085 gilts (initially 38.2 kg) were fed diets formulated to contain SID Lys concentrations of 0.7, 0.8, 0.9, 1.0, 1.1, or 1.2% for 28 d, which were analyzed to be total Lys concentrations of 0.78, 0.86, 0.99, 1.06, 1.14, and 1.24%, respectively. As SID Lys increased, ADG and G:F improved (quadratic, P < 0.003) with optimal performance reached at the SID Lys level of 1.1% or SID Lys:ME ratio of 3.16 g/Mcal. Broken-line analysis indicated breakpoints of 1.03 and 1.05% SID Lys for ADG and G:F, respectively. Gilts in this trial required approximately 21.8 g of SID Lys intake per kilogram of BW gain from 38 to 65 kg. In Exp. 2, 1,092 (initially 55.2 kg) gilts were fed diets formulated to contain SID Lys concentrations of 0.66, 0.74, 0.82, 0.90, 0.98, or 1.06% for 28 d, which were analyzed to be total Lys concentrations of 0.75, 0.73, 0.84, 0.90, 0.95, and 0.97%, respectively. Both ADG (quadratic, P = 0.12) and G:F improved (linear, P < 0.001) as SID Lys increased, with broken-line analysis of ADG indicating a requirement estimate of 0.90%, which corresponds to a SID Lys:ME ratio of 2.58 g/Mcal. Gilts in this trial required approximately 19.6 g of SID Lys per kilogram of BW gain from 55 to 80 kg. In Exp. 3, 1,080 gilts (initially 84.1 kg) were fed diets formulated to contain SID Lys concentrations of 0.54, 0.61, 0.68, 0.75, 0.82, or 0.89% for 29 d, which were analyzed to be total Lys concentrations of 0.62, 0.92, 0.79, 0.99, 0.93, and 1.07%, respectively. As the SID Lys concentration increased, ADG and G:F improved (linear, P < 0.001), and performance responses were maximized at the greatest SID Lys level of 0.89% or SID Lys:ME ratio of 2.55 g/Mcal of ME. Gilts in this trial required 23.0 g of SID Lys per kg of BW gain from 85 to 110 kg. The ideal SID Lys:ME ratio was based on the requirement determined by broken-line analysis in Exp. 1, 2, and 3, with the greatest level being tested in Exp. 3. This equation, SID Lys:ME ratio = -0.011 × BW, kg + 3.617, estimates the optimal SID Lys:ME ratios for growth of gilts (PIC 337 × 1050) in this commercial finishing environment. These studies showed growth performance advantages to increasing SID Lys for growing and finishing gilts over previously reported optimal levels, particularly in the later finishing stages.  相似文献   

4.
Five experiments utilizing 3,628 pigs were conducted to determine the true ileal digestible (TID) Lys requirement for 11- to 27-kg pigs fed corn-soybean meal diets. In Exp. 1, 216 barrows (initial BW = 11.5 kg) were used, with dietary TID Lys levels from 1.05 to 1.40% TID Lys (0.07% increments). All diets were isocaloric (3.42 Mcal of ME) and contained the same inclusion of soybean meal (33.1%). Dietary Lys content was increased by adding graded levels of L-Lys.HCl (0.0 to 0.445%), with other crystalline AA supplied to meet minimum AA-to-Lys ratios. For the 21-d period, ADG and G:F increased linearly (P < 0.001) with increasing Lys levels. Experiments 2 through 5 were each conducted in different commercial research facilities. In Exp. 2, a 5-point titration (1.05 to 1.41% TID Lys; 0.09% increments) was used containing the same level of soybean meal (34.3%), with graded levels of L-Lys.HCl addition as in Exp. 1 for a 16-d period. Exp. 3 used similar diets, but was a 28-d period from 11.8 to 28 kg. There were linear increases in ADG (P < 0.01) and G:F (P < 0.01) with increasing dietary Lys in both experiments. On the basis of these results, 2 additional 28-d experiments were conducted with similar diets, except for 1 additional level at 1.50% TID Lys. In Exp. 4, linear increases (P < 0.01) in ADG and G:F were observed from d 0 to 14. From d 14 to 28, there were quadratic increases (P < 0.04) in ADG and G:F, which resulted in quadratic increases (P < 0.01) in ADG and G:F with increasing dietary Lys for the entire 28-d period. Similarly, in Exp. 5, there were linear increases (P < 0.01) in growth performance from d 0 to 14, but there were quadratic increases in G:F (P < 0.001) with increasing dietary Lys for the overall period. Data from all 5 experiments yielded a single-slope, broken-line response, with requirement estimates for TID Lys of 1.33 and 1.35% for 11- to 19-kg pigs. The 5 experiments gave requirement estimates of 1.30% TID Lys (3.80 g of TID Lys/Mcal of ME) for 11- to 27-kg pigs, equivalent to 19 g of TID Lys/kg of gain.  相似文献   

5.
We conducted two experiments to evaluate the effects of dietary energy density and lysine:calorie ratio on the growth performance and carcass characteristics of growing and finishing pigs. In Exp. 1, 80 crossbred barrows (initially 44.5 kg) were fed a control diet or diets containing 1.5, 3.0, 4.5, or 6.0% choice white grease (CWG). All diets contained 3.2 and 2.47 g of lysine/Mcal ME during growing (44.5 to 73 kg) and finishing (73 to 104 kg), respectively. Increasing energy density did not affect overall ADG; however, ADFI decreased and feed efficiency (Gain:feed ratio; G:F) increased (linear, P < .01). Increasing energy density decreased and then increased (quadratic, P < .06) skinned fat depth and lean percentage. In Exp. 2, 120 crossbred gilts (initially 29.2 kg) were used to determine the effects of increasing levels of CWG and lysine:calorie ratio fed during the growing phase on growth performance and subsequent finishing growth. Pigs were fed increasing energy density (3.31, 3.44, or 3.57 Mcal ME/kg) and lysine:calorie ratio (2.75, 3.10, 3.45, or 3.80 g lysine/Mcal ME). No energy density x lysine:calorie ratio interactions were observed (P > .10). Increasing energy density increased ADG and G:F and decreased ADFI of pigs from 29.5 to 72.6 kg (linear, P < .05). Increasing lysine:calorie ratio increased ADG and ADFI (linear, P < .01 and .07, respectively) but had no effect on G:F. From 72.6 to 90.7 kg, all pigs were fed the same diet containing .90% lysine and 2.72 g lysine/Mcal ME. Pigs previously fed with increasing lysine:calorie ratio had decreased (linear, P < .02) ADG and G:F. Also, pigs previously fed increasing CWG had decreased (linear, P < .03) ADG and ADFI. From 90.7 to 107 kg when all pigs were fed a diet containing .70% lysine and 2.1 g lysine/Mcal ME, growth performance was not affected by previous dietary treatment. Carcass characteristics were not affected by CWG or lysine:calorie ratio fed from 29.5 to 72.6 kg. Increasing the dietary energy density and lysine:calorie ratio improved ADG and G:F of growing pigs; however, pigs fed a low-energy diet or a low lysine:calorie ratio from 29 to 72 kg had compensatory growth from 72 to 90 kg.  相似文献   

6.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

7.
Two 21-d experiments were conducted to determine the optimum standardized ileal digestible (SID) Trp:Lys in growing pigs fed corn-based diets compared with non-corn-based diets. The primary response variables in both experiments were ADG and plasma urea N (PUN) concentrations with the optimum SID Trp:Lys determined using broken-line analysis. Experiment 1 evaluated the optimum SID Trp:Lys in growing pigs fed corn-based diets consisting primarily of corn with minor inclusion of Canadian field peas and corn gluten meal to keep the SID Trp:Lys low. This experiment used 120 crossbred pigs (initial BW: 25.73 ± 2.46 kg) that were blocked by sex and initial BW and allotted to 5 SID Trp:Lys with 5 pens each for the first 4 treatments and 4 pens for the last treatment and 5 pigs/pen. Diets were formulated by the addition of supplemental Trp to create various SID Trp:Lys (12.77, 14.07, 15.50, 16.91, and 17.94%) with a constant SID Lys of 0.66%, which was determined to be 83% of the Lys requirement for pigs at this location. As the SID Trp:Lys increased from 12.77 to 17.94%, ADG increased (0.562, 0.648, 0.788, 0.787, and 0.815 kg/d) linearly (P < 0.001) and quadratically (P = 0.009), resulting in an optimum SID Trp:Lys of 15.73% (P < 0.001). Plasma urea N decreased (10.43, 9.30, 8.21, 8.55, and 9.25 mg/dL) linearly (P = 0.069) and quadratically (P = 0.015), resulting in an optimum SID Trp:Lys of 15.83% (P = 0.007). Experiment 2 evaluated the optimum SID Trp:Lys in growing pigs fed non-corn-based diets consisting primarily of barley and Canadian field peas, with smaller proportions of corn and wheat. Experiment 2 used 120 crossbred pigs (initial BW: 28.49 ± 2.92 kg) that were allotted to 5 increasing SID Trp:Lys (13.05, 14.32, 15.59, 16.85, and 18.11%; 0.66% SID Lys) in the same manner as Exp. 1. As SID Trp:Lys increased in Exp. 2, ADG increased linearly (P = 0.007) with the optimum SID Trp:Lys of 15.99% (P = 0.048). Plasma urea N concentrations decreased linearly (P = 0.056) and quadratically (P = 0.067) as SID Trp:Lys increased, resulting in an optimum SID Trp:Lys of 15.29% (P = 0.009). Averaging the break point values for ADG and PUN obtained from broken-line analysis for Exp. 1 and 2 produced optimum SID Trp:Lys of 15.78 and 15.64%, respectively. Based on the results from these 2 experiments, it seems that the optimum SID Trp:Lys is virtually unaffected by the dietary feedstuffs used as long as the diets are formulated on an SID AA basis.  相似文献   

8.
Two experiments were conducted to evaluate the effects of NutriDense low-phytate corn in conjunction with increasing added dietary fat on growing and finishing pig performance. Diets in both experiments were corn-soybean meal-based, with yellow dent or NutriDense low-phytate corn and 0, 3, or 6% added choice white grease arranged in a 2 x 3 factorial design. There were 25 to 28 pigs per pen and 7 pens (replications) per treatment in both experiments. In Exp. 1, a total of 1,162 gilts with an initial BW of 44.6 kg were used in a 28-d growth study. A constant true ileal digestible (TID) Lys:ME ratio of 2.80 g/Mcal and available P:ME ratio of 0.90 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there were no corn source x added fat interactions (P >/= 0.79). Regardless of corn source, ADG and G:F increased (linear, P = 0.03) with increasing added fat. There were no differences (P >/= 0.34) in pig growth performance between those fed NutriDense low-phytate or yellow dent corn. In Exp. 2, a total of 1,128 gilts with an initial BW of 81.6 kg were used in a 28-d growth study. A constant TID Lys:ME ratio of 2.15 g/Mcal of ME and available P:ME ratio of 0.75 g/Mcal were maintained in all treatment diets. Overall (d 0 to 28), there was a tendency (P = 0.07) for a corn source x added fat interaction for G:F, which can be explained by the improved G:F in pigs fed yellow dent corn only when 6% fat was added to the diet, whereas G:F was improved at both 3 and 6% added fat in pigs fed NutriDense low-phytate corn. There were no differences (P >/= 0.18) in growth performance between pigs fed NutriDense low-phytate or yellow dent corn. These results indicate that increasing added fat improved growth performance regardless of the corn source. In addition, growth performance was similar for pigs fed NutriDense low-phytate or yellow dent corn.  相似文献   

9.
Two experiments were conducted to determine if ractopamine hydrochloride (RAC) could improve nutrient utilization and decrease water utilization, thus reducing the environmental footprint of hog operations. The tissue accretion experiment used comparative slaughter involving 120 barrows (95 ± 3 kg of BW), including 12 assigned to an initial slaughter group; the remaining pigs were slaughtered at 108 or 120 kg. Growth performance and nutrient retention were determined. The 15-d metabolism experiment consisted of 54 pigs (95 ± 3 kg of BW). Growth performance, feed and water intake, and urine and fecal output were measured. The metabolism experiment used 9 dietary treatments arranged as a 3 × 3 factorial: 3 quantities of RAC (0, 5, and 10 mg/kg) and 3 standardized ileal digestible-Lys:DE ratios (1.73, 2.14, and 2.63 g/Mcal of DE). The tissue accretion study was designed as a 3 × 3 × 2 factorial arrangement of treatments using the same 9 dietary treatments to include slaughter BW (108 and 120 kg of BW) as an additional factor. In the tissue accretion experiment, RAC had no effect on ADG, ADFI, or G:F (P>0.10). With increased Lys, G:F improved (P=0.029), but not ADG or ADFI (P>0.10). Protein deposition rates increased numerically (P=0.11); water deposition rates increased (P=0.050), whereas lipid deposition tended to decrease with RAC inclusion (P=0.055). With greater RAC and Lys, the pigs had improved ADG (P=0.002) and G:F (P<0.001) in the metabolism experiment. Daily water intake (P=0.017.) and water output (P=0.033) decreased with RAC inclusion. Lysine inclusion did not alter the water balance (P>0.10). Urinary N excretion (P<0.001), total N excretion (P=0.003), and the urine N:fecal N ratio (P<0.001) decreased with the addition of RAC; fecal N (P=0.008) increased with RAC inclusion. Retention of N improved with addition of RAC to the diet (P=0.003). With greater dietary Lys, fecal N was reduced (P<0.001). The pigs fed the 2.14 g of Lys/Mcal tended to have the least urinary N (P = 0.069) and total N excretion (P=0.086) and to have the greatest N retention (P=0.086) and urinary N:fecal N ratio (P=0.009). A RAC × Lys interaction was observed for N digestibility (P=0.001), excretion (P=0.001), and retention (P=0.002) and for fecal (P=0.001) and urinary N (P=0.036). By improving N and water utilization in finishing pigs, RAC-containing diets supplemented with sufficient Lys can reduce N excretion into the environment from swine facilities.  相似文献   

10.
Three experiments were conducted to determine the optimal true ileal digestible (TID) Trp:Lys ratio for 90- to 125-kg barrows. Basal diets contained 0.55% TID Lys and were either corn-based (Exp. 1) or corn- and soybean meal-based (Exp. 2 and 3) diets supplemented with crystalline AA. In addition, each experiment contained a corn-soybean meal control diet. The number of pigs per pen progressively increased, with pigs housed in 2 (n = 82; initial and final BW of 88.5 and 113.6 kg, respectively), 7 (n = 210, initial and final BW of 91.2 and 123.3 kg, respectively), or 20 to 22 (n = 759; initial and final BW of 98.8 and 123.4 kg, respectively) pigs per pen for each successive experiment. Pigs in Exp. 1 were fed 6 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.109, 0.145, 0.182, 0.218, 0.255, and 0.290. For the 28-d period, there was a quadratic improvement in G:F (P = 0.05) and ADG (P = 0.08) with increasing TID Trp:Lys, characterized by an improvement in performance of pigs fed the basal diet compared with those consuming diets with a 0.145 TID Trp:Lys ratio, with a plateau thereafter as TID Trp:Lys increased. Pigs fed the control diet had less increase in backfat depth than the average of pigs fed the titration diets (1.30 vs. 4.09 mm, respectively; P = 0.02), but pork quality was unaffected by dietary treatment. Pigs in Exp. 2 were fed 4 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.130, 0.165, 0.200, and 0.235. Average daily gain and ADFI increased in a linear fashion with increasing TID Trp:Lys for the 29-d trial (P < 0.01), with quadratic improvements in d-29 BW (P = 0.06) and G:F (P = 0.05). Pigs fed the diet containing a TID Trp:Lys ratio of 0.165 had greater d-29 BW, ADG, G:F, and lower serum urea N concentration than pigs fed the basal diet (P < 0.05), but were similar to pigs fed TID Trp:Lys ratios of 0.200 and 0.235 for all criteria measured. In Exp. 3, TID Trp:Lys ratios of 0.13, 0.15, 0.17, 0.19, and 0.21 were evaluated. The response to increasing TID Trp:Lys was limited to a quadratic (P < 0.10) improvement in G:F with increasing TID Trp:Lys ratios. Maximum G:F was noted at a TID Trp:Lys ratio of 0.17. No relationship was noted between TID Trp:Lys and carcass characteristics. These experiments demonstrate that the minimum TID Trp:Lys ratio for pigs from 90 to 125 kg of BW is at least 0.145, but not greater than 0.17.  相似文献   

11.
选用61.08 kg杜×长×大三元杂交猪540头,随机分为9个处理,每处理6个重复,每重复10头猪,公、母各半。采用3×3两因素设计,日粮蛋白水平降低4个百分点,净能为9.83、10.04、10.25 MJ/kg,赖氨酸净能比为0.76、0.84、0.91 g/MJ,研究净能和赖氨酸净能比对肥育猪生长性能和胴体品质的影响。结果表明:在60~100 kg阶段,10.04 MJ/kg净能组的ADG显著高于9.83 MJ/kg组的(P<0.05);赖氨酸净能比为0.84 g/MJ组的ADG显著高于0.76 g/MJ组(P<0.05);二者互作不影响生长性能和胴体品质(P>0.05),综合评定在60~100 kg阶段,猪的低蛋白日粮净能水平和赖氨酸净能比分别为10.04 MJ/kg和0.84 g/MJ为宜。  相似文献   

12.
An experiment was conducted to determine the efficacy of dietary betaine, CLA, or both as growth promotants and carcass modifiers in growing Iberian pigs. Twenty gilts (20 kg of BW) were individually penned and fed barley- and soybean meal-based diets (12% CP, 0.81% Lys, and 14.8 MJ of ME/kg of DM) containing either no added betaine or CLA (control), 0.5% betaine, 1% CLA, or 0.5% betaine + 1% CLA, at 95% of ad libitum energy intake. An additional group of 5 pigs was slaughtered at the beginning of the experiment to obtain the initial body composition. At 30 kg of BW, a balance experiment was conducted. At 50 kg of BW, pigs were slaughtered and viscera was removed and weighed. Betaine or CLA alone did not affect growth performance. However, betaine + CLA increased ADG (601 vs. 558 g, P = 0.03) and gain relative to ME intake (25.4 vs. 22.2 g/MJ, P = 0.03) compared with control pigs. Digestibility of nutrients and metabolizability of energy did not differ among diets (P = 0.46 to 0.75). Carcass protein, water, and lean deposition (g/d) increased (19.8, 24.2, and 23.4%, respectively, P < 0.01) in pigs fed betaine + CLA compared with control pigs. Similarly, protein deposition relative to ME intake increased by 28% in betaine + CLA-supplemented pigs (P < 0.05). Fat and mineral deposition did not differ among treatments. Carcass protein, water, and lean content (g/kg of carcass) of pigs fed betaine + CLA-supplemented diets tended to increase (P = 0.07 to 0.09) and carcass fat content tended to decrease (P = 0.09). Similarly, estimated composition of carcass gain was affected, such that water and lean content tended to increase (P = 0.06 to 0.08), whereas fat tended to decrease (P = 0.08) in pigs fed betaine + CLA-supplemented diets. Longissimus muscle area was not altered by treatments (P = 0.49). The liver of pigs fed betaine + CLA diets had increased weight (19%, P < 0.05) compared with control pigs. Overall, dietary supplementation of betaine + CLA increased ADG, protein, water, and lean deposition in growing Iberian gilts. There appears to be a synergistic action when betaine and CLA are used together.  相似文献   

13.
An experiment was carried out to evaluate the metabolic utilization of energy in crossbred barrows during feed restriction and subsequent refeeding. Ten pigs, initially weighing 52 kg, were used in 5 blocks of 2 littermates each. A 7-d adaptation period (P1) was used in which pigs were offered feed at 2.60 MJ of ME.kg of BW(-0.60).d(-1). This adaptation period was followed by a 7-d period (P2), in which 1 pig of each block continued to receive feed at the same level of feeding, whereas for its littermate a 40% reduction in feed intake was imposed (i.e., 1.55 MJ of ME.kg of BW(-0.60).d(-1)). During the subsequent 7-d period (P3), both pigs were offered feed at 2.60 MJ of ME.kg of BW(-0.60).d(-1). After P3, pigs were fasted for 1 d. Heat production (HP) was measured for all pigs during the last 3 d of P1 and on all days for P2 and P3. Heat production was measured using an open-circuit respiration chamber. Energy and N balances were determined for P1, P2, and P3. The HP was partitioned into HP due to physical activity, the short-term thermic effect of feeding, and resting HP. Feed restriction during P2 decreased (P < 0.01) total HP, resting HP, short-term thermic effect of feeding, and retained energy, whereas HP due to physical activity was not affected by feed restriction (P = 0.50). Likewise, fecal and urinary N loss, protein gain, lipid gain, and ADG were reduced during feed restriction (P < 0.01). There were no differences in components of HP and metabolic utilization of energy between the 2 groups during P1 and P3. Nevertheless, urinary N loss was decreased (P < 0.05) and ADG increased (P < 0.01) during P3 for pigs that were restricted in P2. Compensatory growth after a period of feed restriction does not seem to be related to a change in the metabolic utilization of energy for gain but more likely is due to gain in water and gut contents.  相似文献   

14.
The objective of this study was to identify available phosphorus (aP) requirements of pigs reared in commercial facilities. In a preliminary study, 600 gilts (PIC) were allotted randomly to low (0.30%) or high (0.37%) dietary aP from 43 to 48 kg BW, and later to 0.19 or 0.27% aP from 111 to 121 kg BW. No differences were observed (P = 0.42 to 0.88) in ADG, but G:F from 43 to 48 kg tended to improve (P = 0.07) for pigs fed low aP. Results suggested that the aP requirement was at or below 0.30 and 0.19%. These concentrations were used to titrate aP requirements in Exp. 1 and 2. In Exp. 1, 1,260 gilts (initially 33.8 kg) were allotted randomly to one of five dietary treatments containing 0.18, 0.22, 0.25, 0.29, or 0.32% aP, corresponding to 0.5, 0.6, 0.7, 0.8, or 0.9 g of aP/Mcal of ME. There were 28 pigs per pen and nine pens per treatment. From d 0 to 14, increasing aP increased ADG (linear, P = 0.03) and G:F (quadratic, P = 0.07), with the greatest response observed as aP increased from 0.18 to 0.22% (G:F breakpoint = 0.22%). However, from d 0 to 26, no differences (P = 0.12 to 0.81) were observed for any growth traits. Pooled bending moment of the femur, sixth rib, and third and fourth metatarsals increased (linear, P = 0.007) with increasing aP. In Exp. 2, 1,239 gilts (initially 88.5 kg BW) were randomly allotted to one of five dietary treatments containing 0.05, 0.10, 0.14, 0.19, or 0.23% aP, equivalent to 0.14, 0.28, 0.39, 0.53, or 0.64 g of aP/Mcal of ME. The diet with 0.05% aP contained no added inorganic P. From d 0 to 14, increasing aP increased (linear, P = 0.008 to 0.02) ADG and G:F; however, from d 0 to 28, increasing aP had no effect (P = 0.17 to 0.74) on growth performance. Increasing aP increased (linear, P < 0.001 to 0.04) metacarpal bone ash percent and bending moment. Results suggest that 33- to 55-kg pigs require approximately 0.22% aP, which corresponds to 0.60 g of aP/Mcal of ME or 3.30 g of aP/d to maximize ADG and G:F compared with NRC (1998) estimates of 0.23%, 0.70 g of aP/Mcal of ME, and 4.27 g of aP/d for 20- to 50-kg pigs. Finishing pigs (88 to 109 kg) require at least 0.19% aP, corresponding to 0.53 g of aP/Mcal of ME or 4.07 g aP/d compared with NRC (1998) estimates of 0.15%, 0.46 g of aP/Mcal of ME and 4.61 g of aP/d for 80- to 120-kg pigs. However, the percentage of bone ash and bending moment continued to increase with increasing aP. These data also suggest that complete removal of supplemental P in diets for finishing pigs (>88 kg) will decrease ADG and G:F.  相似文献   

15.
Four experiments were conducted to evaluate the nutrient contributions and physiological health benefits of spray-dried egg (SDE) containing only unfertilized eggs as a protein source in nursery pig diets. In all experiments, all diets were formulated to the same ME and Lys content, and each pen within a block (by BW) housed the same number of barrows and gilts. In Exp. 1 and 2 (168 and 140 pigs, respectively; 5 kg BW; 16 d old; 14 replicates/experiment), conducted at a university farm, treatments were with or without 5% SDE in a nursery control diet, which included antibiotics and zinc oxide. Pigs were fed for 10 d after weaning to measure ADG, ADFI, and G:F. The SDE increased (P < 0.05) ADG (Exp. 1: 243 vs. 204 g/d; Exp. 2: 204 vs. 181 g/d) and ADFI (Exp. 1: 236 vs. 204 g/d; Exp. 2: 263 vs. 253 g/d) compared with the control diet but did not affect G:F. In Exp. 3 (1,008 pigs; 5.2 kg BW; 20 d old; 12 replicates/treatment), conducted at a commercial farm, treatments were in a factorial arrangement of with or without SDE and high or low spray-dried plasma (SDP) in nursery diets, which included antibiotics and zinc oxide. Pigs were fed for 6 wk using a 4-phase feeding program (phases of 1, 1, 2, and 2 wk, respectively) with declining diet complexity to measure ADG, ADFI, G:F, removal rate (mortality plus morbidity), and frequency of medical treatments per pen and day (MED). The diets with the SDE increased (P < 0.05) ADFI during phase 1 only (180 vs. 164 g/d) compared with the diets without the SDE but did not affect growth performance during any other phases. The diets with SDE reduced MED during phase 1 (0.75% vs. 1.35%; P < 0.05) and the overall period (0.84% vs. 1.01%; P = 0.062) compared with the diets without the SDE but did not affect removal rate. In Exp. 4 (160 pigs; 6.7 kg BW; 21 d old; 10 replicates/treatment), conducted at a university farm to determine whether SDE can replace SDP, treatments were in a factorial arrangement of with or without SDP or SDE in nursery diets, which excluded antibiotics and zinc oxide. Pigs were fed for 6 wk using the same schedule used in Exp. 3 to measure ADG, ADFI, and G:F. The diets with SDE increased (P < 0.05) ADFI during phase 1 only (195 vs. 161 g/d) compared with the diets without SDE but did not affect growth performance during any other periods. In conclusion, SDE can be an efficacious protein and energy source in nursery pig diets and improves health and, in some instances, increases growth rate.  相似文献   

16.
Fifty-eight purebred castrated male Iberian (IB) piglets (initial BW 9.9 ± 0.1 kg) were used in an experiment to determine the effect of dietary protein content (PC) and feeding level (FL) on the rates of BW gain, whole body protein deposition (PD), and energy utilization between 10 and 25 kg of BW using the serial slaughter method. Treatments followed a 4 × 2 factorial arrangement with 4 PC (201, 176, 149, and 123 g of CP/kg of DM) and 2 FL (0.95 and 0.70 × ad libitum) and 6 or 7 piglets per combination of treatments. All diets were formulated to have an optimal AA pattern. Six piglets were slaughtered at the start of the trial to estimate initial body composition. The experimental pigs were individually housed in an environmentally controlled room (27 ± 2°C) until they reached 25 kg of BW, when they were slaughtered and analyzed for body composition. Positive linear effects of dietary PC on ADG, G:F, and gain:ME intake were observed (P < 0.001). Piglets fed at the highest FL showed greater ADG, G:F, and gain:ME intake (P < 0.001). An average increase was estimated to be 38.0 g of gain/MJ of ME intake. Protein deposition increased linearly from 35.6 to 50.9 g/d with increasing dietary PC (P < 0.001). A daily increase was estimated to be 0.35 g of PD/g of CP intake. Although the maximal genetic potential for PD of the IB piglet was not attained, a maximal value of 59.9 g/d for whole-body PD was achieved when the diet provided 201 g of CP/kg of DM and was fed at 0.95 × ad libitum. Piglets on the highest FL deposited on average 39% more body protein (P < 0.001) than restricted piglets. An average value of 4.39 g increase in PD/MJ of ME intake was obtained for diets containing 201 and 176 g of CP/kg of DM. Maintenance energy requirements and net efficiency of utilization of ME for growth, calculated by linear regression of ME intake on body retained energy, were 427 kJ/kg of BW(0.75)·d(-1) and 0.552, respectively. The corresponding partial efficiencies of utilization of ME for protein and fat deposition were 0.378 and 0.672, respectively, considerably less than the accepted values for conventional pig breeds. Practical diets of the young IB piglet should contain at least 201 g of ideal CP/kg of DM.  相似文献   

17.
Three experiments were conducted to determine the true ileal digestible (TID) Lys and sulfur AA (SAA) requirement and to compare the bioefficacy of 2-hydroxy-4-(methylthio)butanoic acid (HMTBA) and dl-MET as Met sources in nursery pigs. Experiment 1 included 2 studies: 1 was 662 nursery pigs (Triumph 4 x PIC C22; initial BW 12.2 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID Lys concentrations ranging from 1.10 to 1.50%; and the second study was 665 nursery pigs (Triumph 4 x PIC C22; initial BW 12.3 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID SAA concentration ranging from 0.63 to 0.90%. In Exp. 2, 638 nursery pigs (Triumph 4 x PIC C22; initial BW 13.0 +/- 0.16 kg) were allotted to the same 5 SAA dietary treatments as in Exp. 1. In Exp. 3, 1,232 pigs (Triumph 4 x PIC C22; initial BW 11.0 +/- 0.30 kg) were allotted to 1 of 7 dietary treatments. The basal diet (diet 1) was supplemented with high concentrations of synthetic AA but no Met; this resulted in a dietary concentration of TID Lys of 1.30% and TID SAA of 0.50%. Diets 2 to 7 were the basal diet supplemented with 3 equimolar levels of HMTBA or dl-MET to provide TID SAA concentrations of 0.56, 0.62, and 0.68%, respectively. In Exp. 1, increasing TID Lys from 1.10 to 1.50% increased ADG (quadratic; P < 0.05) and improved G:F (linear; P < 0.002). The pooled data of Exp. 1 (SAA study) and Exp. 2 indicated that increasing TID SAA from 0.63 to 0.90% increased ADG (quadratic; P < 0.01) and improved G:F (quadratic; P < 0.01). Various methods of analyzing the growth response surface indicated that the optimal TID Lys concentration ranged from 1.28 to 1.32% for ADG (Exp. 1), and the optimal TID SAA concentration ranged from 0.73 to 0.77% for ADG and 0.80 to 0.83% for G:F (pooled Exp. 1 and 2), respectively. In Exp. 3, increasing TID SAA concentrations from 0.50 to 0.68% resulted in a linear improvement of ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.001). The best fit comparison of HMTBA and dl-MET was determined by the Schwartz Bayesian Information Criteria index, which indicated the average relative efficacy of HMTBA vs. dl-MET was 111%, with 95% confidence interval of 83 to 138%, within the range of TID SAA tested. Thus, the TID Lys and SAA requirements of modern lean-genotype pigs from 11- to 26-kg were greater than the 1998 NRC recommendations, and both HMTBA and dl-MET as Met sources can supply equimolar amounts of Met activity.  相似文献   

18.
Two experiments were conducted to determine the effect of substituting a more available dietary carbohydrate (CHO) for portions of corn or fat in the diet on growth performance, carcass traits, meat quality, and serum or plasma metabolites in growing-finishing pigs. A three-phase feeding program was used with corn-soybean meal diets formulated to provide 105% of the Lys requirement for barrows or gilts gaining 325 g of lean daily in Exp. 1 or gilts gaining 350 g of lean daily in Exp. 2. Diets were isoenergetic within experiments. All other nutrients met or exceeded suggested requirements. In Exp. 1, pigs were allotted to three dietary treatments (0, 7.5, or 15.0% sucrose), with three replications of barrows and three replications of gilts, and with three or four pigs per replicate pen; average initial and final BW were 25.2 and 106.7 kg. In Exp. 2, gilts were allotted to two dietary treatments (waxy [high amylopectin] or nonwaxy [75% amylopectin and 25% amylose] corn as the grain source), with five replications of four gilts per replicate pen; average initial and final BW were 37.7 and 100.0 kg. In Exp. 1, ADG and gain:feed ratio increased linearly (P < 0.02) as dietary sucrose increased. Minolta color scores, a* and b*, and drip loss (P < 0.06) also increased linearly with added sucrose. In Exp. 2, ADG, carcass weight and length, and the Minolta a* value were greater for pigs fed waxy corn (P < 0.08) than for those fed nonwaxy corn. Feed intake, longissimus muscle area, 10th-rib and average backfat thickness, dressing percentage, fat-free lean, percentage of lean and muscling, lean gain per day, total fat, percentage fat, lean:fat ratio, serum or plasma metabolites (Exp. 1: serum urea N; Exp. 2: serum urea N, and plasma nonesterified fatty acids, triacylglycerols, total and high-density lipoprotein cholesterol, insulin, and total protein), pH of the longissimus muscle, and subjective muscle scores (color, firmness-wetness, and marbling) were not affected by diet in either experiment. In summary, increasing availability of dietary CHO in growing-finishing pig diets improved growth performance, but it did not affect carcass traits.  相似文献   

19.
Two experiments were conducted to refine the Ile needs in 7- to 11-kg pigs. In Exp. 1, 1,680 pigs were fed a 1.25% digestible Lys diet containing 7.5% spray-dried blood cells (as-fed basis) with supplemental crystalline Ile (0.06% increments) to generate seven levels of apparent digestible Ile (0.47 to 0.83%). There were 12 replicates of each treatment with 20 pigs per pen, and treatments were imposed at an initial BW of 7 kg and continued for 16 d. Responses in ADG, ADFI, G:F, and plasma urea nitrogen (PUN) were quadratic (P < 0.01) over the 16-d period. Data were fitted to both a single-slope broken line and a quadratic fit, and when the quadratic response curve was superimposed on the broken line, the points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.70, 0.73, 0.66, and 0.65% digestible Ile for ADG, ADFI, G:F, and PUN, respectively. Using the ADG and ADFI obtained at this intersection point resulted in an estimate of 9.1 mg of digestible Ile per gram of weight gain. In Exp. 2, 1,840 pigs were fed similarly composed diets, except that digestible Lys was lowered in six diets to 1.10% by decreasing soybean meal. Crystalline Ile was supplemented at 0.09% increments to generate six levels of digestible Ile (0.37 to 0.83%). A seventh diet contained 1.25% digestible Lys by supplementing the 0.83% digestible Ile diet with 0.19% L-Lys HCl to verify that 1.10% digestible Lys was deficient for these pigs. There were 12 replicates of each treatment with 22 pigs per pen, and treatments imposed at an initial BW of 7 kg and continued for 16 d. Supplementation of Lys to the 0.83% digestible Ile diet (1.10 vs. 1.25% digestible Lys) did not affect ADG (260 vs. 264 g/d, P = 0.60) and ADFI (359 vs. 343 g/d, P = 0.20), whereas G:F (725 vs. 774 g/kg, P < 0.01) was improved by increasing dietary Lys. Responses in ADG, ADFI, and G:F to the first six diets were quadratic (P < 0.01) over the 16-d period. The points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.686, 0.638, and 0.684% digestible Ile for ADG, ADFI, and G:F, respectively. Using the ADG and ADFI obtained at this intersection point results in an estimate of 9.9 mg of digestible Ile per gram of weight gain. These results suggest that although the percent digestible Ile requirement and digestible Ile:Lys ratio for starter (7 to 11 kg) pigs may be higher than 1998 NRC recommendations, the requirement may be lower than current recommendations when taking gain and feed intake into account.  相似文献   

20.
Four experiments were conducted to investigate the feeding value of South Dakota-grown field peas (Pisum sativum L.) for growing pigs. In Exp. 1, 96 pigs (initial BW = 22 +/- 3.35 kg) were allotted to four treatment groups (four pigs per pen, six replicate pens per treatment) and fed growing (0.95% Lys) and finishing (0.68% Lys) diets containing 0, 12, 24, or 36% field peas (as-fed basis). There were no differences among the treatment groups in ADG, ADFI, or G:F. Likewise, there were no differences in backfat thickness or lean meat percent among treatment groups, but pigs fed diets containing 12, 24, or 36% field peas had greater (P < 0.05) loin depths than pigs fed the control diet. In Exp. 2, 120 pigs (initial BW = 7.8 +/- 1.04 kg) were allotted to four treatment groups 2 wk after weaning. Pigs were then fed diets containing 0, 6, 12, or 18% field peas (as-fed basis) during the following 4 wk. There were five pigs per pen and six replicate pens per treatment. Results of the experiment showed no differences in ADG, ADFI, or G:F among treatment groups. In Exp. 3, apparent (AID) and standardized (SID) ileal digestibility coefficients of CP and AA in field peas and soybean meal were measured using six individually penned growing pigs (initial BW = 36.5 +/- 2.1 kg) arranged in a repeated 3 x 3 Latin square design. The AID for Met, Trp, Cys, and Ser, and the SID for Met, Trp, and Cys were lower (P < 0.05) in field peas than in soybean meal; but for CP and all other AA, no differences in AID or SID were observed between the two feed ingredients. Experiment 4 was an energy balance experiment conducted to measure the DE and ME concentrations in field peas and corn. Six growing pigs (initial BW = 85.5 +/- 6.5 kg) were placed in metabolism cages and fed diets based on field peas or corn and arranged in a two-period switch-back design. The DE values for field peas and corn (3,864 and 3,879 kcal/kg DM, respectively) were similar, but the ME of corn was higher (P < 0.05) than the ME of field peas (3,825 vs. 3,741 kcal ME/kg DM). The results from the current experiments demonstrate that the nutrients in South Dakota-grown field peas are highly digestible by growing pigs. Therefore, such field peas may be included in diets for nursery pigs and growing-finishing pigs in amounts of at least 18 and 36%, respectively, without negatively affecting pig performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号