首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
ObjectiveTo describe the effects of alpha2-adrenergic receptor antagonists on the pharmacodynamics of sublingual (SL) detomidine in the horse.Study designRandomized crossover design.AnimalsNine healthy adult horses with an average age of 7.6 ± 6.5 years.MethodsFour treatment groups were studied: 1) 0.04 mg kg?1 detomidine SL; 2) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.075 mg kg?1 yohimbine intravenously (IV); 3) 0.04 mg kg?1 detomidine SL followed 1 hour later by 4 mg kg?1 tolazoline IV; and 4) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.12 mg kg?1 atipamezole IV. Each horse received all treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for yohimbine, atipamezole and tolazoline concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume (PCV) and plasma proteins were monitored.ResultsChin-to-ground distance increased following administration of the antagonists, however, this effect was transient, with a return to pre-reversal values as early as 1 hour. Detomidine induced bradycardia and increased incidence of atrioventricular blocks were either transiently or incompletely antagonized by all antagonists. PCV and glucose concentrations increased with tolazoline administration, and atipamezole subjectively increased urination frequency but not volume.Conclusions and clinical relevanceAt the doses administered in this study, the alpha2-adrenergic antagonistic effects of tolazoline, yohimbine and atipamezole on cardiac and behavioral effects elicited by SL administration of detomidine are transient and incomplete.  相似文献   

2.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

3.
ObjectiveTo describe selected pharmacodynamic effects of detomidine and yohimbine when administered alone and in sequence.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV, 2) 0.2 mg kg?1 yohimbine IV and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV. Each horse received all three treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume and plasma proteins were monitored.ResultsYohimbine rapidly reversed the sedative effects of detomidine in the horse. Additionally, yohimbine effectively returned heart rate and the percent of atrio-ventricular conduction disturbances to pre-detomidine values when administered 15 minutes post-detomidine administration. Plasma glucose was significantly increased following detomidine administration. The detomidine induced hyperglycemia was effectively reduced by yohimbine administration. Effects on packed cell volume and plasma proteins were variable.Conclusions and clinical relevanceIntravenous administration of yohimbine effectively reversed detomidine induced sedation, bradycardia, atrio-ventricular heart block and hyperglycemia.  相似文献   

4.
ObjectiveTo investigate the pharmacokinetics and effects of methadone on behaviour and plasma concentrations of cortisol and vasopressin in healthy dogs.Study designRandomized, cross-over, experimental trial.AnimalsNine adult dogs (beagle and beagle cross breeds), four males and five females.MethodsMethadone hydrochloride, 0.4 mg kg?1, was administered intravenously (IV) and subcutaneously (SC) with a crossover design. Drug and hormone analyses in plasma were performed using Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry and radioimmunoassay respectively. Behavioural data were collected using a standardized protocol.ResultsAfter IV administration, the plasma concentration of methadone at 10 minutes was 82.1 ± 9.2 ng mL?1 (mean ± SD), the terminal half-life was 3.9 ± 1.0 hours, the volume of distribution 9.2 ± 3.3 L kg?1 and plasma clearance 27.9 ± 7.6 mL minute?1 kg?1. After SC administration, time to maximal plasma concentration was 1.26 ± 1.04 hours and maximal plasma concentration of methadone was 23.9 ± 14.4 ng mL?1, the terminal half-life was 10.7 ± 4.3 hours and bioavailability was 79 ± 22%. Concentrations of both cortisol and vasopressin were increased for an hour following IV methadone. The observed behavioural effects of methadone were decreased licking and swallowing and an increase in whining after SC administration. The latter finding is notable as it can be misinterpreted as pain when methadone is used as an analgesic.Conclusion and clinical relevanceWhen methadone was administered by the SC route, the half-life was longer, but the individual variation in plasma concentrations was greater compared with IV administration. Increased frequency of whining occurred after administration of methadone and may be a drug effect and not a sign of pain. Cortisol and vasopressin concentrations in plasma may not be suitable for evaluating analgesia after methadone treatment.  相似文献   

5.
ObjectiveDescribe the pharmacokinetics of buprenorphine and norbuprenorphine in horses and to relate the plasma buprenorphine concentration to the pharmacodynamic effects.Study designSingle phase non-blinded study.AnimalsSix dedicated research horses, aged 3–10 years and weighing 480–515 kg.MethodsThermal and mechanical nociceptive thresholds, heart and respiratory rates and locomotor activity were measured before and 15, 30, 45 &; 60 minutes and 2, 4, 6, 8, 12 &; 24 hours post-administration of 10 μg kg−1 buprenorphine IV. Intestinal motility was measured 1, 6, 12 &; 24 hours after buprenorphine administration. Venous blood samples were obtained before administration of buprenorphine 10 μg kg−1 IV and 1, 2, 4, 6, 10, 15, 30, 45 &; 60 minutes, and 2, 4, 6, 8, 12 &; 24 hours afterwards. Plasma buprenorphine and norbuprenorphine concentrations were measured using a liquid chromatography-tandem mass spectroscopy (LC-MS/MS) assay with solid-phase extraction. A non-compartmental method was used for analysis of the plasma concentration–time data and plasma buprenorphine concentrations were modelled against two dynamic effects (change in thermal threshold and mechanical threshold) using a simple Emax model.ResultsPlasma buprenorphine concentrations were detectable to 480 minutes in all horses and to 720 minutes in two out of six horses. Norbuprenorphine was not detected. Thermal thresholds increased from 15 minutes post-buprenorphine administration until the 8–12 hour time points. The increase in mechanical threshold ranged from 3.5 to 6.0 Newtons (median: 4.4 N); and was associated with plasma buprenorphine concentrations in the range 0.34–2.45 ng mL−1.Conclusions and clinical relevanceThe suitability of the use of buprenorphine for peri-operative analgesia in the horse is supported by the present study.  相似文献   

6.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

7.
ObjectiveTo describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats.Study designRandomized, prospective, blinded, three period crossover experiment.AnimalsSix healthy adult cats weighing 4.1 ± 0.5 kg.MethodsBuprenorphine (0.02 mg kg?1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24 hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p < 0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics.ResultsTT increased above baseline from 15 to 480 minutes and at 30 and 60 minutes after IV and IM administration, respectively (p < 0.05). Maximum increase in TT (mean ± SD) was 9.3 ± 4.9 °C at 60 minutes (IV), 4.6 ± 2.8 °C at 45 minutes (IM) and 1.9 ± 1.9 °C at 60 minutes (SC). TT was significantly higher at 15, 60, 120 and 180 minutes, and at 15, 30, 45, 60 and 120 minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0 = 47.4 minutes) and receptor binding (kon = 0.011 mL ng?1 minute?1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff = 18.2 minutes).Conclusions and clinical relevanceIV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats.  相似文献   

8.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

9.
ObjectiveTo evaluate the effects of intravenous (IV) or intramuscular (IM) hyoscine premedication on physiologic variables following IV administration of medetomidine in horses.Study designRandomized, crossover experimental study.AnimalsEight healthy crossbred horses weighing 330 ± 39 kg and aged 7 ± 4 years.MethodsBaseline measurements of heart rate (HR), cardiac index (CI), respiratory rate, systemic vascular resistance (SVR), percentage of patients with second degree atrioventricular (2oAV) block, mean arterial pressure (MAP), pH, and arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) were obtained 5 minutes before administration of IV hyoscine (0.14 mg kg?1; group HIV), IM hyoscine (0.3 mg kg?1; group HIM), or an equal volume of physiologic saline IV (group C). Five minutes later, medetomidine (7.5 μg kg?1) was administered IV and measurements were recorded at various time points for 130 minutes.ResultsMedetomidine induced bradycardia, 2oAV blocks and increased SVR immediately after administration, without significant changes in CI or MAP in C. Hyoscine administration induced tachycardia and hypertension, and decreased the percentage of 2oAV blocks induced by medetomidine. Peak HR and MAP were higher in HIV than HIM at 88 ± 18 beats minute?1 and 241 ± 37 mmHg versus 65 ± 16 beats minute?1 and 192 ± 38 mmHg, respectively. CI was increased significantly in HIV (p ≤ 0.05). Respiratory rate decreased significantly in all groups during the recording period. pH, PaCO2 and PaO2 were not significantly changed by administration of medetomidine with or without hyoscine.Conclusion and clinical relevanceHyoscine administered IV or IM before medetomidine in horses resulted in tachycardia and hypertension under the conditions of this study. The significance of these changes, and responses to other dose rates, requires further investigation.  相似文献   

10.
ObjectiveTo determine the optimal dose, serum concentrations and analgesic effects of intravenous (IV) tramadol in the horse.Study designTwo-phase blinded, randomized, prospective crossover trial.AnimalsSeven horses (median age 22.5 years and mean weight 565 kg).MethodsHorses were treated every 20 minutes with incremental doses of tramadol HCl (0.1–1.6 mg kg?1) or with saline. Heart rate, respiratory rate, step frequency, head height, and sweating, trembling, borborygmus and head nodding scores were recorded before and up to 6 hours after treatment. In a second study, hoof withdrawal and skin twitch reflex latencies (HWRL and STRL) to a thermal stimulus were determined 5 and 30 minutes, and 1, 2, 4 and 6 hours after bolus IV tramadol (2.0 mg kg?1) or vehicle. Blood samples were taken to determine pharmacokinetics.ResultsCompared to saline, tramadol caused no change in heart rate, step frequency or sweating score. Respiratory rate, head height, and head nodding and trembling scores were transiently but significantly increased and borborygmus score was decreased by high doses of tramadol. Following cumulative IV administration of 3.1 mg kg?1 and bolus IV administration of 2 mg kg?1, the elimination half-life of tramadol was 1.91 ± 0.33 and 2.1 ± 0.9 hours, respectively. Baseline HWRL and STRL were 4.16 ± 1.0 and 3.06 ± 0.99 seconds, respectively, and were not significantly prolonged by tramadol.Conclusion and clinical relevanceIV tramadol at cumulative doses of up to 3.1 mg kg?1 produced minimal transient side effects but 2.0 mg kg?1 did not provide analgesia, as determined by response to a thermal nociceptive stimulus.  相似文献   

11.
ObjectiveVarious drugs administered to horses undergoing surgical procedures can release histamine. Histamine concentrations were evaluated in horses prepared for surgery and administered butorphanol or morphine intraoperative infusions.Study designProspective studies with one randomized.AnimalsA total of 44 client-owned horses.MethodsIn one study, anesthesia was induced with xylazine followed by ketamine–diazepam. Anesthesia was maintained with guaifenesin–xylazine–ketamine (GXK) during surgical preparation. For surgery, isoflurane was administered with intravenous (IV) morphine (group M: 0.15 mg kg–1 and 0.1 mg kg–1 hour–1; 15 horses) or butorphanol (group B: 0.05 mg kg–1 and 0.01 mg kg–1 hour–1; 15 horses). Histamine and morphine concentrations were measured using enzyme-linked immunoassay before opioid injection (time 0), and after 1, 2, 5, 30, 60 and 90 minutes. In a subsequent study, plasma histamine concentrations were measured in 14 horses before drug administration (baseline), 15 minutes after IV sodium penicillin and 15 minutes after starting GXK IV infusion. Statistical comparison was performed using anova for repeated measures. Pearson correlation compared morphine and histamine concentrations. Data are presented as mean ± standard deviation. Significance was assumed when p ≤ 0.05.ResultsWith histamine, differences occurred between baseline (3.2 ± 2.4 ng mL–1) and GXK (5.2 ± 7.1 ng mL–1) and between baseline and time 0 in group B (11.9 ± 13.4 ng mL–1) and group M (11.1 ± 12.4 ng mL–1). No differences occurred between baseline and after penicillin or between groups M and B. Morphine concentrations were higher at 1 minute following injection (8.1 ± 5.1 ng mL–1) than at 30 minutes (4.9 ± 3.1 ng mL–1) and 60 minutes (4.0 ± 2.5 ng mL–1). Histamine correlated with morphine at 2, 30 and 60 minutes.Conclusions and clinical relevanceGXK increased histamine concentration, but concentrations were similar with morphine and butorphanol.  相似文献   

12.
ObjectiveTo describe the pharmacokinetics of detomidine and yohimbine when administered in combination.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing of 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV (D), 2) 0.2 mg kg?1 yohimbine IV (Y) and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV (DY). Each horse received all three dose regimens with a minimum of 1 week in between subsequent regimens. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Data were analyzed using both non-compartmental and compartmental analysis.ResultsThe maximum measured detomidine concentrations were 76.0 and 129.9 ng mL?1 for the D and DY treatments, respectively. Systemic clearance and volume of distribution of detomidine were not significantly different for either treatment. There was a significant increase in the maximum measured yohimbine plasma concentrations from Y (173.9 ng mL?1) to DY (289.8 ng mL?1). Both the Cl and Vd for yohimbine were significantly less (6.8 mL minute?1 kg?1 (Cl) and 1.7 L kg?1 (Vd)) for the DY as compared to the Y treatments (13.9 mL minute?1 kg?1 (Cl) and 2.7 L kg?1 (Vd)). Plasma concentrations were below the limit of quantitation (0.05 and 0.5 ng mL?1) by 18 hours for both detomidine and yohimbine.Conclusion and clinical relevanceThe Cl and Vd of yohimbine were affected by prior administration of detomidine. The elimination half life of yohimbine remained unaffected when administered subsequent to detomidine. However, the increased plasma concentrations in the presence of detomidine has the potential to cause untoward effects and therefore further studies to assess the physiologic effects of this combination of drugs are warranted.  相似文献   

13.
Buprenorphine is absorbed following sublingual administration, which would be a low‐stress delivery route in foals. However, the pharmacokinetics/pharmacodynamics are not described in foals. Six healthy foals <21 days of age participated in a blinded, randomized, 3‐period, 5‐sequence, 3‐treatment crossover prospective study. Foals received 0.01–0.02 mg/kg buprenorphine administered SL or IV with an equivalent volume of saline administered by the opposite route. Blood was collected from the cephalic vein for pharmacokinetic analysis. Physiologic parameters (HR, RR, body temperature, GI sounds), locomotion (pedometer), and behavioral data (activity level, nursing time, response to humans) were recorded. Plasma concentration of buprenorphine exceeded a presumed analgesic level (0.6 ng/ml) in five foals in the IV group and one in the SL group but only for a very brief time. Pharmacokinetic analysis following IV administration demonstrated a short elimination half‐life (t1/2β 1.95 ± 0.7 hr), large volume of distribution (6.46 ± 1.54 L/kg), and a high total clearance (55.83 ± 23.75 ml/kg/min), which differs from adult horses. Following SL administration, maximum concentrations reached were 0.61 ± 0.11 ng/ml and bioavailability was 25.1% ± 10.9%. In both groups, there were minor statistical differences in HR, RR, body temperature, locomotion, and time spent nursing. However, these differences were clinically insignificant in this single dose study, and excitement, sedation, or colic did not occur.  相似文献   

14.
ObjectiveTo investigate changes in colloid osmotic pressure (COP), total protein (TP) and osmolality (OSM) during anesthesia in horses given intravenous lactated Ringer’s solution (LRS) or LRS and hetastarch (HES).Study designProspective, clinical trial.AnimalsFourteen horses presented for surgery. Mean age 8.3 ± 1.9 years; mean weight 452 ± 25 kg.MethodsHorses were premedicated with xylazine intravenously (IV); anesthesia was induced with ketamine and diazepam IV, and maintained with sevoflurane. Butorphanol was administered IV with pre-medications or immediately after induction. Xylazine was administered IV for recovery if necessary. LRS was administered IV to all horses with a target rate of 5–10 mL kg?1 hour?1. Half of the horses also received 6% HES, 2.5 mL kg?1 over 1 hour in addition to LRS. Horses that received LRS only were considered the LRS group. Horses that received both LRS and HES were considered the LRS/HES group. Blood was drawn pre- and post-anesthesia, immediately following induction, and every 30 minutes throughout anesthesia. COP, TP and OSM were measured.ResultsCOP and TP significantly decreased at similar rates for both treatment groups from pre-anesthetic values. Pre-anesthetic COP was significantly greater in the LRS group when compared to the LRS/HES group pre-, post- and throughout anesthesia. In the LRS group post-anesthetic OSM was significantly different than the pre-anesthesia value and that for the LRS/HES group.Conclusions and clinical relevanceAdministration of IV HES (2.5 mL kg?1, over 1 hour) in combination with LRS does not attenuate the decrease in COP typically seen during anesthesia with crystalloid administration alone. Based on these results, administration of HES at this rate and total volume would not be expected to prevent fluid shifts into the interstitium through its effects on COP.  相似文献   

15.
ObjectiveTo evaluate the pharmacokinetics and selected pharmacodynamic effects of a commercially available l-methadone/fenpipramide combination administered to isoflurane anaesthetized ponies.Study designProspective single-group interventional study.AnimalsA group of six healthy adult research ponies (four mares, two geldings).MethodsPonies were sedated with intravenous (IV) detomidine (0.02 mg kg–1) and butorphanol (0.01 mg kg–1) for an unrelated study. Additional IV detomidine (0.004 mg kg–1) was administered 85 minutes later, followed by induction of anaesthesia using IV diazepam (0.05 mg kg–1) and ketamine (2.2 mg kg–1). Anaesthesia was maintained with isoflurane in oxygen. Baseline readings were taken after 15 minutes of stable isoflurane anaesthesia. l-Methadone (0.25 mg kg–1) with fenpipramide (0.0125 mg kg–1) was then administered IV. Selected cardiorespiratory variables were recorded every 10 minutes and compared to baseline using the Wilcoxon signed-rank test. Adverse events were recorded. Arterial plasma samples for analysis of plasma concentrations and pharmacokinetics of l-methadone were collected throughout anaesthesia at predetermined time points. Data are shown as mean ± standard deviation or median and interquartile range (p < 0.05).ResultsPlasma concentrations of l-methadone showed a rapid initial distribution phase followed by a slower elimination phase which is best described with a two-compartment model. The terminal half-life was 44.3 ± 18.0 minutes, volume of distribution 0.43 ± 0.12 L kg–1 and plasma clearance 7.77 ± 1.98 mL minute–1 kg–1. Mean arterial blood pressure increased from 85 (±16) at baseline to 100 (±26) 10 minutes after l-methadone/fenpipramide administration (p = 0.031). Heart rate remained constant. In two ponies fasciculations occurred at different time points after l-methadone administration.Conclusions and clinical relevanceAdministration of a l-methadone/fenpipramide combination to isoflurane anaesthetized ponies led to a transient increase in blood pressure without concurrent increases in heart rate. Pharmacokinetics of l-methadone were similar to those reported for conscious horses administered racemic methadone.  相似文献   

16.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of high-concentration formulation of buprenorphine (1.8 mg mL–1; Simbadol) following subcutaneous (SC) administration in horses.Study designProspective, randomized, crossover trial.AnimalsA group of six healthy adult horses weighing 521–602 kg.MethodsOn three occasions, Simbadol (0.005 mg kg–1; treatment S5), (0.0025 mg kg–1; treatment S2.5) or saline (treatment SAL) were administered SC at least 7 days apart in random order. Electrical nociceptive threshold (ENT) measured on the neck region, physiologic variables, locomotor activity, degree of restlessness and presence of excitatory signs were measured at baseline and for up to 48 hours after injection. Blood was collected for pharmacokinetic analysis at the same time intervals and plasma buprenorphine concentration (Cp) measured using liquid chromatography–tandem mass spectrometry.ResultsBuprenorphine was quantifiable in all horses from 15 minutes after administration up to 8–12 hours. ENT was significantly increased in treatment S2.5 compared with treatment SAL at 0.75–6 hours after treatment. Increase in locomotor activity and compulsive behavior were recorded in all horses after Simbadol, and degree of restlessness was significantly higher in treatment S5 than SAL for a sustained time. Gastrointestinal motility significantly decreased in all horses after Simbadol and returned to baseline by 16 hours after treatment.Conclusions and clinical relevanceIn horses, SC Simbadol was rapidly absorbed and Cp decreased rapidly. Side effects commonly seen in horses after opioids were observed in both Simbadol treatments, but degree of opioid-induced excitement lasted significantly longer in treatment S5. Simbadol (0.0025 mg kg–1) SC has the potential to be used clinically to treat pain in horses. However, at this dose, duration of antinociceptive effects was not longer than that reported for conventional buprenorphine, and side effects, including reduction in gastrointestinal motility and increased locomotor activity, were documented.  相似文献   

17.
ObjectiveTo determine the behavioral effects and pharmacokinetics of methadone in healthy Greyhounds.Study designProspective experimental study.AnimalsThree male and three female healthy Greyhounds.MethodsMethadone hydrochloride, 0.5 mg kg−1 IV (equivalent to 0.45 mg kg−1 methadone base), was administered as an IV bolus. Trained observers subjectively assessed the behavioral effects of methadone. Blood samples were obtained at predetermined time points and plasma methadone concentrations were measured by liquid chromatography with tandem mass spectrometry. Pharmacokinetic variables were estimated with computer software.ResultsMethadone was well tolerated by the dogs with panting and defecation observed as adverse effects. Mild sedation was present, but no vomiting, excitement, or dysphoria was observed. The elimination half-life, volume of distribution, and plasma clearance were 1.53 ± 0.18 hours, 7.79 ± 1.87 L kg−1, and 56.04 ± 9.36 mL minute−1 kg−1, respectively.Conclusions and clinical relevanceMethadone was well tolerated by Greyhounds. The volume of distribution was larger than expected, with resultant lower plasma concentrations than expected. Higher doses may need to be administered to Greyhounds in comparison with non-Greyhound dogs in order to achieve similar plasma drug concentrations. A dosage of 1–1.5 mg kg−1 every 3–4 hours is suggested for future studies of analgesic efficacy of methadone in Greyhounds.  相似文献   

18.
ObjectiveTo investigate the pharmacokinetics of carprofen after a single intravenous (IV) dose and multiple oral doses administered to pigs undergoing electroporation of the pancreas.Study designProspective experimental study.AnimalsA group of eight female pigs weighing 31.74 ± 2.24 kg (mean ± standard deviation).MethodsCarprofen 4 mg kg?1 was administered IV after placement of a central venous catheter during general anaesthesia with isoflurane. Blood samples were collected 30 seconds before and 5, 10, 20, 30 and 60 minutes and 2, 4, 6, 8, 12 and 24 hours after carprofen administration. Subsequently, the same dose of carprofen was administered orally, daily, for 6 consecutive days and blood collected at 36, 48, 60, 72, 96, 120, 144 and 168 hours after initial carprofen administration. Plasma was analysed using liquid chromatography with mass spectrometry. Standard pharmacokinetic parameters were calculated by compartmental analysis of plasma concentration–time curves. Data are presented as mean ± standard error.ResultsThe initial plasma concentration of IV carprofen was estimated at 54.57 ± 3.92 μg mL?1 and decreased to 8.26 ± 1.07 μg mL?1 24 hours later. The plasma elimination curve showed a bi-exponential decline: a rapid distribution phase with a distribution half-life of 0.21 ± 0.03 hours and a slower elimination phase with an elimination half-life of 17.31 ± 3.78 hours. The calculated pharmacokinetic parameters were as follows: the area under the plasma concentration–time curve was 357.3 ± 16.73 μg mL?1 hour, volume of distribution was 0.28 ± 0.07 L kg?1 and plasma clearance rate was 0.19 ± 0.009 mL minute?1 kg?1. The plasma concentration of carprofen, administered orally from days 2 to 7, varied from 9.03 ± 1.87 to 11.49 ± 2.15 μg mL?1.Conclusions and clinical relevanceCarprofen can be regarded as a long-acting non-steroidal anti-inflammatory drug in pigs.  相似文献   

19.
20.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroid anaesthetic, alfaxalone, in neonatal foals after a single intravenous (IV) injection of alfaxalone following premedication with butorphanol tartrate.Study designProspective experimental study.AnimalsFive clinically healthy Australian Stock Horse foals of mean ± SD age of 12 ± 3 days and weighing 67.3 ± 12.4 kg.MethodsFoals were premedicated with butorphanol (0.05 mg kg?1 IV) and anaesthesia was induced 10 minutes later by IV injection with alfaxalone 3 mg kg?1. Cardiorespiratory variables (pulse rate, respiratory rate, direct arterial blood pressure, arterial blood gases) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and alfaxalone plasma concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis.ResultsThe harmonic, mean ± SD plasma elimination half life (t½) for alfaxalone was 22.8 ± 5.2 minutes. The observed mean plasma clearance (Clp) and volume of distribution (Vd) were 19.9 ± 5.9 mL minute kg?1 and 0.6 ± 0.2 L kg?1, respectively. Overall, the quality of the anaesthetic inductions and recoveries was good and most monitored physiological variables were clinically acceptable in all foals, although some foals became hypoxaemic for a short period following recumbency. The mean durations of anaesthesia from induction to first movement and from induction to standing were 18.7 ± 7 and 37.2 ± 4.7 minutes, respectively.ConclusionsThe anaesthetic protocol used provided a predictable and consistent plane of anaesthesia in the five foals studied, with minimal cardiovascular depression. In foals, as in the adult horse, alfaxalone has a short elimination half life.Clinical relevanceAlfaxalone appears to be an adequate anaesthetic induction agent in foals and the pharmacokinetics suggest that, with continuous infusion, it might be suitable to provide more prolonged anaesthesia. Oxygen supplementation is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号