首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
反刍动物饲养产生的甲烷是温室气体主要来源之一,越来越多的人认为这对全球气候变暖有巨大威胁。在过去的几十年里,人们做了大量研究来减轻反刍动物的甲烷排放。近年来,硝基化合物作为一种潜在的抗甲烷添加剂引起人们的广泛关注,并取得一定效果。本文综述了硝基乙烷、2-硝基醇、2-硝基-1-丙醇、3-硝基-1-丙醇、3-硝基-1-丙酸的体内外研究,探讨其对降低甲烷排放的作用。同时本文也探讨了这些硝基化合物在反刍动物瘤胃中可能存在的抑制作用模式,旨在为减少反刍动物甲烷排放提供科学依据。但在抑制瘤胃甲烷生成过程中,硝基化合物如何影响辅酶的活性还尚不清楚。  相似文献   

2.
反刍动物每年排放甲烷(CH_(4))约1亿t,是全球变暖的重点关注对象。在瘤胃发酵过程中产生CH_(4)会造成2%~12%的能量损失。目前,有多种饲料添加剂能从不同角度降低CH_(4)排放量,但都存在一定缺陷;而甲烷厌氧氧化作为自然环境中重要的甲烷汇亦有可能在瘤胃中存在。本文综述了不同饲料添加剂对CH_(4)减排的作用以及甲烷厌氧氧化在瘤胃中存在的可能性,以期为反刍动物CH4减排提供新思路。  相似文献   

3.
反刍动物排放甲烷既会造成环境污染,又会造成饲料能量浪费,因此探究反刍动物甲烷减排措施至关重要。瘤胃存在复杂的微生物发酵系统,反刍动物的甲烷生成与瘤胃微生物区系关系密切。本文对瘤胃甲烷生成的机理和调控途径进行了综述,并着重阐述了主要耗氢化合物及耗氢微生物的研究进展,为通过添加耗氢化合物调节瘤胃微生物,实现反刍动物甲烷减排与改善瘤胃发酵提供技术依据。  相似文献   

4.
硝基化合物是指化学结构中含有硝基(-NO2)官能团的化合物.黄芪、冠花、木兰属等牧草植物中含有的天然硝基化合物(3-硝基丙醇和3-硝基丙酸)以及化学工业合成的硝基化合物(硝基烷烃、硝基乙醇、3-硝基酯-1-丙醇等)均能够高效抑制瘤胃发酵甲烷的生成,而其自身能够被瘤胃微生物所代谢利用.本文重点围绕硝基化合物的分类及其脱毒...  相似文献   

5.
单宁是一类广泛存在于植物中的多酚化合物,因其涩味降低反刍动物采食量,故通常被归类为饲料中的抗营养因子。近年来,研究发现单宁可与蛋白质结合,抑制蛋白质被瘤胃过度降解,增加了蛋白质在后肠道的消化吸收,提高了反刍动物对氮元素(N)的利用率。此外,研究表明单宁在调控瘤胃发酵和抑制甲烷排放方面表现出积极作用。本文主要综述了单宁对反刍动物生产性能、瘤胃发酵和微生物区系的影响,旨在为其应用于反刍动物健康养殖提供合理的理论参考依据。  相似文献   

6.
近年来,畜禽养殖过程中的温室气体排放引发了全球的广泛关注。反刍动物瘤胃发酵产生了大量甲烷(CH4),且排泄物堆放过程中还会产生氧化亚氮(N2O),加剧温室效应。因而,瘤胃CH4以及N2O的生成与调控成为科学界的研究热点。植物单宁是高分子质量的水溶性多酚类化合物,广泛存在于植物界中。大量体内外试验表明,植物单宁具有减少CH4产量和氮排放的作用,但其作用效果受到单宁添加量、结构、植物来源以及动物种类、生理状态和饲粮组成等多方面因素的影响,且还存在影响营养物质消化率和动物生产性能等争议。本文介绍了反刍动物温室气体的生成与调控,综述了植物单宁对反刍动物温室气体排放的调控作用,为植物单宁在反刍动物生产中的应用提供了新思路。  相似文献   

7.
单宁是一类广泛存在于植物中的多酚化合物,因其涩味降低反刍动物采食量,故通常被归类为饲料中的抗营养因子。近年来,研究发现单宁可与蛋白质结合,抑制蛋白质被瘤胃过度降解,增加了蛋白质在后肠道的消化吸收,提高了反刍动物对氮元素(N)的利用率。此外,研究表明单宁在调控瘤胃发酵和抑制甲烷排放方面表现出积极作用。本文主要综述了单宁对反刍动物生产性能、瘤胃发酵和微生物区系的影响,旨在为其应用于反刍动物健康养殖提供合理的理论参考依据。  相似文献   

8.
反刍动物甲烷的排放既造成饲料能量的浪费,也会加剧全球变暖作用。在反刍动物瘤胃中,产甲烷菌主要利用二氧化碳转化产生甲烷。产甲烷菌转化二氧化碳的最后一步反应需要甲基辅酶M还原酶参与,3-硝基酯-1-丙醇(3-nitrooxypropanol,3-NOP)是一种甲基辅酶M类似物,能与辅酶B结合,从而减少甲基辅酶M与辅酶B结合生成甲烷,因此3-NOP能有效地降低瘤胃甲烷的产生。本文旨在阐明3-NOP抑制反刍动物瘤胃甲烷产生的机制以及对反刍动物生产的影响。  相似文献   

9.
反刍动物瘤胃发酵所产生的甲烷通过嗳气经口排出体外,不仅会使饲料的利用率降低,也会加剧温室效应。因此,减少反刍动物瘤胃甲烷的排放量对经济和环境双方面都具有重要意义。主要对反刍动物的甲烷产生机制、甲烷排放量的影响因素以及甲烷抑制剂种类等方面进行了综述。  相似文献   

10.
瘤胃微生物甲烷产生调控技术的研究进展   总被引:1,自引:0,他引:1  
反刍动物体内甲烷的产生是瘤胃发酵能损失的一主要原因,减少甲烷产量对提高反刍动物的能量利用率和环境保护均具有重要意义.论文就反刍动物甲烷生成的机制及影响其生成量的因素等方面做一综述.  相似文献   

11.
Methanogenic archaea reside primarily in the rumen and the lower segments of the intestines of ruminants, where they utilize the reducing equivalents derived from rumen fermentation to reduce carbon dioxide, formic acid, or methylamines to methane(CH_4). Research on methanogens in the rumen has attracted great interest in the last decade because CH_4 emission from ruminants contributes to global greenhouse gas emission and represents a loss of feed energy. Some DNA-based phylogenetic studies have depicted a diverse and dynamic community of methanogens in the rumen. In the past decade, researchers have focused on elucidating the underpinning that determines and affects the diversity, composition, structure, and dynamics of methanogen community of the rumen. Concurrently, many researchers have attempted to develop and evaluate interventions to mitigate enteric CH_4 emission. Although much work has been done using plant secondary metabolites, other approaches such as using nitrate and 3-nitrooxy propanol have also yielded promising results. Most of these antimethanogenic compounds or substances often show inconsistent results among studies and also lead to adverse effects on feed intake and digestion and other aspects of rumen fermentation when fed at doses high enough to achieve effective mitigation. This review provides a brief overview of the rumen methanogens and then an appraisal of most of the antimethanogenic compounds and substances that have been evaluated both in vitro and in vivo. Knowledge gaps and future research needs are also discussed with a focus on methanogens and methane mitigation.  相似文献   

12.
Animal agriculture has been an important component in the integrated farming systems in developing countries. It serves in a paramount diversified role in producing animal protein food, draft power, farm manure as well as ensuring social status-quo and enriching livelihood. Ruminants are importantly contributable to the well-being and the livelihood of the global population. Ruminant production systems can vary from subsistence to intensive type of farming depending on locality, resource availability,infrastructure accessibility, food demand and market potentials. The growing demand for sustainable animal production is compelling to researchers exploring the potential approaches to reduce greenhouse gases(GHG) emissions from livestock. Global warming has been an issue of concern and importance for all especially those engaged in animal agriculture. Methane(CH_4) is one of the major GHG accounted for at least 14% of the total GHG with a global warming potential 25-fold of carbon dioxide and a 12-year atmospheric lifetime. Agricultural sector has a contribution of 50 to 60% methane emission and ruminants are the major source of methane contribution(15 to 33%). Methane emission by enteric fermentation of ruminants represents a loss of energy intake(5 to 15% of total) and is produced by methanogens(archae) as a result of fermentation end-products. Ruminants' digestive fermentation results in fermentation end-products of volatile fatty acids(VFA), microbial protein and methane production in the rumen. Rumen microorganisms including bacteria, protozoa and fungal zoospores are closely associated with the rumen fermentation efficiency. Besides using feed formulation and feeding management, local feed resources have been used as alternative feed additives for manipulation of rumen ecology with promising results for replacement in ruminant feeding. Those potential feed additive practices are as follows: 1) the use of plant extracts or plants containing secondary compounds(e.g., condensed tannins and saponins) such as mangosteen peel powder, rain tree pod; 2) plants rich in minerals, e.g., banana flower powder; and 3) plant essential oils, e.g., garlic, eucalyptus leaf powder, etc. Implementation of the-feed-system using cash crop and leguminous shrubs or fodder trees are of promising results.  相似文献   

13.
为研究不同饲草对反刍动物甲烷(CH4)排放量的影响,利用虚拟仪器技术设计的体外发酵产气自动记录系统,结合气相色谱仪,测定了奶牛业常用饲草体外发酵72 h后的发酵指标。结果表明:发酵72 h后,供试饲草的CH4产量介于56.85~74.63 mL.g-1DMloss,最高的为玉米(Zea mays L.)秸秆,最低的为苜蓿(Medicagosativa L.)干草Ⅰ。体外发酵程度由高到低依次为青贮玉米、苜蓿干草Ⅰ、苜蓿干草Ⅱ、羊草(Leymus chinensis T.)干草、苜蓿茎秆、玉米秸秆。各饲草的产气动态均呈指数函数变化,趋势相似,在0~24 h内累计产气量迅速增加,24~36 h内增长速率渐缓,36 h以后速率趋于平缓。各饲草的CH4产量与其中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量成显著正相关(P<0.05),与其粗蛋白(CP)含量成极显著负相关(P<0.01);通过逐步回归分析,建立常规养分含量与CH4产量的回归模型:PCH4=60.02-0.91×CP+0.44×ADF(R2=0.96)。综上表明,饲草的CH4产量与其品质有关,优质饲草体外发酵程度高,CH4产量低,从而提高饲料利用率、减少温室效应,而劣质饲草则相反。  相似文献   

14.
An experiment was conducted with rumen pouch (RUSITEC--Rumen Simulation Technique). In four fermentation vessels (V), percent proportions of hay and barley were as follows: V1--40:60, V2 - 60:40, V3--80:20 and V4--100:0. Every day 5 mg of monensin dissolved in 1 ml 96% ethanol were added to each fermentation vessel. All diets were isonitrogenous, and after an addition of urea the crude protein (CP) content made 13% in each diet. The experiment lasted 12 days: so called steady state period took the first six days when the fermentation conditions were stabilized. Monensin reduced dry matter digestibility, production of total volatile fatty acids, acetic acid, n-butyric and isovaleric acids and acetate: propionate proportion, and it increased the production of propionic and n-valeric acids. The production of methane and CO2 decreased. The higher proportion of hay in diets decreased dry matter digestibility, digestibility of detergent fibre, total and individual volatile fatty acids, CO2, methane energy yield of volatile fatty acids (E), glucose utilization, production of adenosine triphosphate and production of fermented hexoses. The production, utilization and recovery of metabolic hydrogen also decreased. The effectiveness of microbial matter synthesis (YATP = 11.3) was highest during the fermentation of feed containing 60% hay and 40% barley.  相似文献   

15.
The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant. Recent developments, based on enriching protein in cassava chips, have yielded yeast fermented cassava chip protein (YEFECAP) providing up to 47.5% crude protein (CP), which can be used to replace soybean meal. The use of fodder trees has been developed through the process of pelleting; Leucaena leucocephala leaf pellets (LLP), mulberry leaf pellets (MUP) and mangosteen peel and/or garlic pellets, can be used as good sources of protein to supplement ruminant feeding. Apart from producing volatile fatty acids and microbial proteins, greenhouse gases such as methane are also produced in the rumen. Several methods have been used to reduce rumen methane. However, among many approaches, nutritional manipulation using feed formulation and feeding management, especially the use of plant extracts or plants containing secondary compounds (condensed tannins and saponins) and plant oils, has been reported. This approach could help todecrease rumen protozoa and methanogens and thus mitigate the production of methane. At present, more research concerning this burning issue - the role of livestock in global warming - warrants undertaking further research with regard to economic viability and practical feasibility.  相似文献   

16.
The objective of this study was to identify feed additives that reduce enteric methane emissions from cattle. We measured methane emissions, total tract digestibility (using chromic oxide), and ruminal fermentation (4 h after feeding) in growing beef cattle fed a diet supplemented with various additives. The experiment was designed as a replicated 4 x 4 Latin square with 21-d periods and was conducted using 16 Angus heifers (initial BW of 260 +/- 32 kg). Treatments were: control (no additive), fumaric acid (175 g/d) with sodium bicarbonate (75 g/d), essential oil and spice extract (1 g/d), or canola oil (4.6% of DMI). The basal diet consisted of 75% whole-crop barley silage, 19% steam-rolled barley, and 6% supplement (DM basis). Four large chambers (2 animals fed the same diet per chamber) were equipped to measure methane emissions for 3 d each period. Adding canola oil to the diet decreased (P = 0.009) total daily methane emissions by 32% and tended (P = 0.09) to decrease methane emissions as a percentage of gross energy intake by 21%. However, much of the reduction in methane emissions was due to decreased (P < 0.05) feed intake and lower (P < 0.05) total tract digestibility of DM and fiber. Digestibility of all nutrients was also lowered (P < 0.05) by feeding essential oil, but there were no effects on ruminal fermentation or methane emissions. In contrast, adding fumaric acid to the diet increased total VFA concentration (P = 0.03), increased propionate proportions (P = 0.01), and decreased the acetate:propionate ratio (P = 0.002), but there was no measurable effect on methane emissions. The study demonstrates that canola oil can be used to reduce methane losses from cattle, but animal performance may be compromised due to lower feed intake and decreased fiber digestibility. Essential oils had no effect on methane emissions, whereas fumaric acid caused potentially beneficial changes in ruminal fermentation but no measurable reductions in methane emissions.  相似文献   

17.
The effects of penicillin G, streptomycin, chloramphenicol, 2-bromoethanesulfonic acid and pyromellitic diimide on total gas, methane, volatile fatty acid production and food degradability after 24 h of incubation in vitro were investigated in the cultures of two rumen ciliates. The inocula of both rumen ciliates Entodinium caudatum and Epidinium ecaudatum were used at a volume of 34 ml into the 50 ml glass syringes together with the feed and compounds tested. Despite penicillin G--streptomycin treatment methane production in both cultures was significantly decreased by the inhibitors for Epidinium ecaudatum. Methane production of the bacterial fraction of both protozoan species was significantly lower than in the whole cultures. No epifluorescence of methanogens on (or in) the cells of Entodinium caudatum was observed in contrast to Epidinium with which strong epifluorescence of methanogens on the cell surface was detected. Microscopic observation could indicate that the methane production by Entodinium caudatum was probably caused by their intracellular methanogenic activity, while methane production by Epidinium ecaudatum could be related to both the methanogenic bacterial fraction from their external surface and probably also to intracellular activity. Decreased feed degradability and differences in the fermentation end products accompanied the inhibition of methanogenesis in both in vitro cultures. Entodinium caudatum appeared to be more sensitive than Epidinium ecaudatum to the compounds tested.  相似文献   

18.
作者综述了2009年在ADSA-ASAS大会和CNKI、PubMed等数据库中外源添加剂(离子载体、酶制剂、植物提取物、饲用微生物)对瘤胃发酵调控的相关文献39篇。离子载体如莫能菌素主要通过促进瘤胃丙酸的产生,抑制生物氢化菌,促进长链脂肪酸在瘤胃内发生不完全氢化等瘤胃调控作用,从而缓解反刍动物的能量负平衡,减少甲烷排放,降低乳中脂肪含量。酶制剂(包括纤溶酶和淀粉酶等)在饲喂前加入日粮中能够免受瘤胃蛋白酶的降解,并保持酶活性,促进饲料的消化。植物提取物中皂角甙通过抑制原虫生长降低甲烷的排放,动物长期采食富含单宁的植物可产生单宁耐受菌,并且单宁的植物提取物可影响瘤胃的生物氢化作用,植物精油对瘤胃的调控作用包括减少淀粉和蛋白的降解,以及通过对某种瘤胃微生物的选择性作用抑制氨氮的降解。饲用微生物(主要有酵母菌、乳酸菌、芽孢杆菌等)能增加营养物质消化率,改变瘤胃发酵模式,增加瘤胃微生物菌群,但其益生效果与泌乳阶段、日粮类型、环境条件有关。  相似文献   

19.
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.  相似文献   

20.
Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH_4) production in the rumen. Notable reductions of CH_4 production compared to conventional highroughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences.Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber(NDF),protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas(GP), and CH_4 production.Results: In this experiment, changes in the dietary content of NDF, crude protein(CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF(NDFd) and true DM(TDMd) degradability, and increased CH_4 production per g of incubated DM(P 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM(P 0.001), but CH_4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd,and GP per g of incubated DM, but it had no consequence on CH_4 production per g of TDMd.Conclusions: It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH_4 production per unit of TDMd, but greater differences in GP and CH_4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号