首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
林业   9篇
  2篇
农作物   2篇
水产渔业   1篇
畜牧兽医   2篇
植物保护   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
11.
This study was conducted to evaluate the performance of Sugi lamina impregnated with low-molecular weight phenolic (LMWP) resin using the full cell process followed by curing at high temperature. In this study, penetration of LMWP resin into finger-jointed lamina was examined. Physical and mechanical properties, such as surface hardness, dimensional stability, bending and shear strength of LMWP-resin-treated and untreated lamina were investigated. In addition, the bonding quality and nail-withdrawal resistance of 3-ply assembly specimen made from LMWP-resin-treated and untreated lamina bonded using resorcinol–phenol formaldehyde resin adhesive were also investigated. The main results were as follows: LMWP resin was found to have penetrated sufficiently into finger-jointed lamina. The physical properties of LMWP-resin-treated lamina were found to have improved significantly in comparison with untreated lamina. However, no significant difference was found between LMWP-resin-treated and untreated lamina in terms of their mechanical properties. There was an improvement in bonding quality of the assembly made from LMWP-resin-treated lamina when compared with that made from untreated lamina. In the assembly made from untreated lamina, a significant decrease in nail-withdrawal resistance was observed between dry conditions test and after humidity conditioning test. However, the same tendency was not found in the assembly made from LMWP-resin-treated lamina.  相似文献   
12.
13.
The objective of this study was to develop a method for the effective use of both pruned wood and porcelain stone scrap. Thus, we manufactured a wood-porcelain stone composite board, which has excellent waterproof property and incombustibility properties. In addition, we examined the conditions needed to manufacture the wood-porcelain stone composite board as a construction material and evaluated the physical and mechanical properties of this board based on the Japanese Industrial Standard. The main results obtained were as follows: the wood-porcelain stone composite board made from pruned wood and porcelain stone scrap had excellent thickness swelling performance and the board had incombustibility properties that were better than commercial oriented strand board. In both single-layer and three-layer composite boards with weight ratios of porcelain stone particles of 40%, the internal bond strength exceeded the standard value of type 18 particleboard of JIS A 5908. However, the bending properties of the composite board were inferior to the type 18 particleboard standard. Therefore, it will be necessary to improve the bending properties of the board by changing the particle sizes of both the porcelain stone scrap and the pruned wood component. Part of this article was presented at the 57th Annual Meeting of the Japan Wood Research Society at Hiroshima, August 2007  相似文献   
14.
In this study, the main physical, physiochemical, and chemical properties of hazelnut husk have been determined for the suitability as a container growing medium. Four substrates were prepared based upon decomposition degree: raw (H1), medium decomposed (H2, H3), and strongly decomposed hazelnut husk samples (H4), to determine the optimum growing medium parameters. Particle size was the key parameter to determine the physical properties, which was decreased with the increasing decomposition degrees. The main physical parameters were in the ranges for the ideal growing medium characteristics for H4. Except for raw material (H1), chemical characteristics such as pH, electrical conductivity (EC), carbon (C)/nitrogen (N), and nutrients were within acceptable ranges. The results indicated that hazelnut husk could be an alternative growing media component for containerized crops, if optimum particle size within the range of 0-2mm is obtained, for both aeration and water holding requirements.  相似文献   
15.
This study dealt with the effects of a curing method that uses gaseous and supercritical CO2. Its effects on the properties of oil palm fronds cement-bonded board manufactured by the conventional cold-press setting method were recorded. The effect of MgCl2 as an accelerator of cement setting was also investigated. The hydration of cement was examined using X-ray diffractometry, thermal gravimetry, and scanning electron microscopy. The results are as follows. (1) High-performance cement-bonded boards made from oil palm fronds were successfully manufactured using the CO2 curing method. (2) The curing method using either gaseous or supercritical CO2 resulted in accelerated curing of cement (within several minutes). Accelerated formation of the hydration products (e.g., calcium carbonate and calcium silicate) is the main reason for the high strength of CO2-cured boards. (3) The CO2 curing technology does not require setting accelerators, which cause a decrease in the dimensional stability of cement-bonded board.  相似文献   
16.
This study was designed to reveal the role of the cement/wood ratio in a hydration test of wood-cement mixtures. The compatibility of oil palm (Elaeis guineensis Jacq) fronds-cement mixtures was tested in the hydration test, with the addition of magnesium chloride as an accelerator at different water/cement ratios. To prove the findings on the hydration behavior of components, the cement-bonded boards were manufactured using a conventional cold-pressing method at different cement/wood ratios. Results indicated that the optimum weight ration of cement/wood increased with decreasing wood powder size based on the equal specific surface area ratio of cement/wood in the hydration test and board manufacturing. The addition of magnesium chloride improved the compatibility of oil palm fronds with cement; the compatibility factor (C A) increased by more than 90% with the addition of 5% magnesium chloride. TheC A factor increased proportionally with a higher magnesium chloride content and a higher water/ cement ratio. The addition of magnesium chloride also enhanced the cement hydration and ultimate board strength properties. However, the addition of 5% magnesium chloride did not improve the properties of boards sufficiently at a cement/wood ratio of 2.21.0.  相似文献   
17.
A new acetylenic alkaloid was isolated from the sponge Leucetta sp. The structure was established by analyzing spectroscopic data. The alkaloid showed cytotoxicity IC50 2.5 μg/mL against NBT-T2 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号