首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16704篇
  免费   14篇
林业   3653篇
农学   1296篇
基础科学   138篇
  2810篇
综合类   739篇
农作物   2108篇
水产渔业   1804篇
畜牧兽医   1173篇
园艺   1125篇
植物保护   1872篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   2751篇
  2017年   2708篇
  2016年   1192篇
  2015年   69篇
  2014年   34篇
  2013年   29篇
  2012年   817篇
  2011年   2150篇
  2010年   2113篇
  2009年   1261篇
  2008年   1330篇
  2007年   1595篇
  2006年   51篇
  2005年   116篇
  2004年   124篇
  2003年   164篇
  2002年   79篇
  2001年   7篇
  2000年   43篇
  1999年   4篇
  1998年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   12篇
  1992年   7篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1930年   2篇
  1928年   1篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
171.
Background, Aim and Scope  The distribution of sediments in estuarine beaches is controlled by the interactions between sediment supply, hydrodynamic processes and human intervention. The main purpose of this study is to characterize the sediments of Tagus estuarine beaches in order to understand their origin and to contribute to a better knowledge of the Tagus estuary sediment budget. Methods  Surface sediment samples were collected across beach profiles and sand grain size analysis was performed by dry sieving. Grain size statistics for the median (d50) and standard deviation (SDM) were obtained using the Moment method. This study was complemented by a qualitative evaluation of the sediment composition. Cross-shore topographic surveys were conducted for selected sampling sites. Results  Tagus estuarine beach sediments are mainly composed of quartz sand particles which are fine-grained and well sorted near the mouth of the estuary and medium to coarse-grained and moderately sorted in the inner domain. Compositional results show evidence of active anthropogenic sediment sources, especially in the coarser fractions. Discussion  The analysis of the textural and compositional characteristics of beach sediments in the inner estuarine domain is compatible with local sedimentary sources, while a marine signature is present at the mouth and inlet channel sediments. In the inner domain, differences in the sedimentary processes are represented by the textural characteristics of the sediments, such as the sorting degree and the gravel content. Sediment characteristics also reflect human intervention in the system, with the introduction of anthropogenic and allochthonous particles and the mixture of sediments from different sources. Conclusions  The sediments of the inner Tagus estuarine beaches are derived from local Plio-Pleistocene outcrops while inlet and outer estuary beaches reveal a dominant marine source. Beach textural variability observed in the inner domain is not related to wave forcing gradients, but mainly to variations in the sedimentary processes along the estuarine margins and to human intervention. Results show that the Tagus estuarine beaches depended, almost exclusively, on sediment input from local sources until the last century. With increasing human occupation, sediment transfers became dominated by anthropogenically related activities mainly connected with the occupation of estuarine margins and dredging. Recommendations and Perspectives  Further studies should extend the present level of knowledge in what concerns sand transport patterns through additional compositional and geochemical analysis, and the development of new techniques in order to allow the quantitative evaluation of the impact of human activities on the sediment budget.  相似文献   
172.
Plants of white clover (Trifolium repens L.) cultivar Crau, a self-fertile Crau genotype, and nine generations of inbred progeny were raised in sand culture in a glasshouse experiment. Digital images of the root systems were made and root morphological characteristics were determined on all the plants. Root architectural parameters were measured on the Crau parent and the S1, S4, S6, and S9 inbred lines. The clover roots became shorter and thicker with inbreeding but the number of root tips per plant was unchanged. Root architecture (branching pattern) was largely unaffected by inbreeding. It is concluded that inbreeding white clover will lead to shorter, thicker roots, and reduced nutrient uptake efficiency compared with the parent clover. The degree to which these deleterious traits are overcome during the development of F1 hybrids needs to be determined.  相似文献   
173.
A major factor affecting spring canola (Brassica napus) production in Canada is killing frosts during seedling development in the spring and seed maturation in the fall. The objective of this study was to explore the possibility of producing spring canola lines with mutations that have altered biochemical pathways that increase cold tolerance. The approach was to generate UV point mutations in cultured microspores followed by chemical in vitro selection of individual mutant microspores or embryos resulting in measurable alterations to various biochemical pathways with elevated levels of key defense signaling molecules such as, salicylic acid (SA), p-Fluoro-d,l-Phenyl Alanine (FPA), and jasmonic acid (JA). In addition, since proline (Pro) is known to protect plant tissues in the cold-induced osmotic stress pathway, mutants that overproduce Pro were selected in vitro by using three Pro analogues: hydroxyproline (HP), azetidine-2-carboxylate (A2C); and, 3,4-dehydro-d,l-proline (DP). Of the 329 in vitro selected mutant embryos produced, 74 were identified with significant cold tolerance compared to their donor parents through indoor freezer tests at −6°C, and 19 had better winter field survival than winter canola checks. All chemically selected mutant doubled haploids with increased cold tolerance compared well with parent lines for all seed quality and agronomic parameters. Development of increased frost tolerant cultivars should allow for spring canola to be produced in western Canada without compromising seed quality.  相似文献   
174.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   
175.
The mechanism that controls the proportion of cannabichromene (CBC), a potential pharmaceutical, in the cannabinoid fraction of Cannabis sativa L. is explored. As with tetrahydrocannabinol (THC) and cannabidiol (CBD), CBC is an enzymatic conversion product of the precursor cannabigerol (CBG). CBC is reported to dominate the cannabinoid fraction of juveniles and to decline with maturation. This ontogeny was confirmed in inbred lines with different mature chemotypes. A consistent CBC presence was found in early leaves from a diverse clone collection, suggesting that CBC synthase is encoded by a fixed locus. Morphological variants possessing a ‘prolonged juvenile chemotype’ (PJC), a substantial proportion of CBC persisting up to maturity, are presented. PJC is associated with a reduced presence of floral bracts, bracteoles, and capitate-stalked trichomes. Genetic factors causing these features were independent of the allelic chemotype locus B that was previously postulated and regulates THC and CBD synthesis and CBG accumulation. In contrast to previously described Cannabis chemotypes, the cannabinoid composition of PJCs showed plasticity in that reduced light levels increased the CBC proportion. The ability of PJC plants to enable the production of pharmaceutical raw material with high CBC purity is demonstrated.  相似文献   
176.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   
177.
178.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   
179.
Soil enzymes are linked to microbial functions and nutrient cycling in forest ecosystems and are considered sensitive to soil disturbances. We investigated the effects of severe soil compaction and whole-tree harvesting plus forest floor removal (referred to as FFR below, compared with stem-only harvesting) on available N, microbial biomass C (MBC), microbial biomass N (MBN), and microbial biomass P (MBP), and dehydrogenase, protease, and phosphatase activities in the forest floor and 0–10 cm mineral soil in a boreal aspen (Populus tremuloides Michx.) forest soil near Dawson Creek, British Columbia, Canada. In the forest floor, no soil compaction effects were observed for any of the soil microbial or enzyme activity parameters measured. In the mineral soil, compaction reduced available N, MBP, and acid phosphatase by 53, 47, and 48%, respectively, when forest floor was intact, and protease and alkaline phosphatase activities by 28 and 27%, respectively, regardless of FFR. Forest floor removal reduced available P, MBC, MBN, and protease and alkaline phosphatase activities by 38, 46, 49, 25, and 45%, respectively, regardless of soil compaction, and available N, MBP, and acid phosphatase activity by 52, 50, and 39%, respectively, in the noncompacted soil. Neither soil compaction nor FFR affected dehydrogenase activities. Reductions in microbial biomass and protease and phosphatase activities after compaction and FFR likely led to the reduced N and P availabilities in the soil. Our results indicate that microbial biomass and enzyme activities were sensitive to soil compaction and FFR and that such disturbances had negative consequences for forest soil N and P cycling and fertility.  相似文献   
180.
We established protocols for the analysis of genetic diversity in chayote (Sechium edule) by using isozyme markers, thereby determining the level of genetic diversity present in 42 accessions of chayote from Costa Rica. We obtained clear and reproducible zymograms for eight enzyme staining systems: PGM, 6-PGD, PGI, IDH, MDH, SOD, SKD, and EST, and were able to score 14 putative loci. Eight of the 14 loci examined were polymorphic. We found 35 distinct multilocus genotypes among these accessions. Five of these multilocus genotypes were homozygous for all loci. In addition, our data also revealed that most of the multilocus genotypes (24) were heterozygous for only one of the eight loci, and the rest were heterozygous for two or three loci (9 and 4 accessions, respectively). Seven multilocus genotypes were found in two different accessions. Dice similarity coefficient was used to study the relationship between accessions. This analysis, based on the presence and absence of alleles, revealed that accessions collected in the same location seldom shared the same multilocus genotype. The value of isozyme polymorphisms as tools to continue studies on the characterization of chayote is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号