首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16709篇
  免费   22篇
林业   3655篇
农学   1299篇
基础科学   137篇
  2774篇
综合类   733篇
农作物   2109篇
水产渔业   1804篇
畜牧兽医   1221篇
园艺   1113篇
植物保护   1886篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   2751篇
  2017年   2713篇
  2016年   1187篇
  2015年   72篇
  2014年   25篇
  2013年   23篇
  2012年   816篇
  2011年   2135篇
  2010年   2108篇
  2009年   1264篇
  2008年   1327篇
  2007年   1594篇
  2006年   46篇
  2005年   119篇
  2004年   120篇
  2003年   168篇
  2002年   80篇
  2001年   19篇
  2000年   52篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   15篇
  1992年   9篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   11篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   3篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1969年   2篇
  1968年   6篇
  1967年   4篇
  1965年   2篇
  1953年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
Conservationists, managers, and land planners are faced with the difficult task of balancing many issues regarding humans impacts on natural systems. Many of these potential impacts arise from local-scale and landscape-scale changes, but such changes often covary, which makes it difficult to isolate and compare independent effects arising from humans. We partition multi-scale impacts on riparian forest bird distribution in 105 patches along approximately 500 km of the Madison and Missouri Rivers, Montana, USA. To do so, we coupled environmental information from local (within-patch), patch, and landscape scales reflecting potential human impacts from grazing, invasive plant species, habitat loss and fragmentation, and human development with the distribution of 28 terrestrial breeding bird species in 2004 and 2005. Variation partitioning of the influence of different spatial scales suggested that local-scale vegetation gradients explained more unique variation in bird distribution than did information from patch and landscape scales. Partitioning potential human impacts revealed, however, that riparian habitat loss and fragmentation at the patch and landscape scales explained more unique variation than did local disturbances or landscape-scale development (i.e., building density in the surrounding landscape). When distribution was correlated with human disturbance, local-scale disturbance had more consistent impacts than other scales, with species showing consistent negative correlations with grazing but positive correlations with invasives. We conclude that while local vegetation structure best explains bird distribution, managers concerned with ongoing human influences in this system need to focus more on mitigating the effects of large-scale disturbances than on more local land use issues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
992.
Mediterranean landscapes are dynamic systems that undergo temporal changes in composition and structure in response to disturbances, such as fire. Neither landscape patterns nor driving factors that affect them are evenly distributed in space. Accordingly, disturbances and biophysical factors interact in space through time. The aim of this paper is to assess the relative influence of topography and fire on the landscape patterns of a large forested area located in Sierra de Gredos (Central Spain) through time. A series of Landsat MSS images from 1975 to 1990, and a digital elevation model (DEM) were used to map fires, assess topographical complexity and evaluate changes in landscape composition and structure. Functional regions across the entire landscape were identified using different classification criteria (i.e., percentage burned area and topographic properties) to model topographic and fire impacts at regional scales. A canonical variance partition method, with a time series split-plot design, quantified the relative influence and co-variation of topography and fire on land cover patterns through time. Main results indicated that analyzing portions of the landscape under similar environmental conditions and fire histories, the effects of different fire regimes on the spatio-temporal dynamics of main land covers can be highlighted. However, the impact of fire on landscape patterns was high variable among regions due to the different regeneration abilities of main land covers, the topographic constraints and the fire histories of each region. Hence, broad patterns of fire related variance and co-variation with topography emerged across the entire area due to the different conditions of each landscape portion in which this large Mediterranean landscape was divided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
993.
Sylvatic plague is a major factor influencing the dynamics of black-tailed prairie dog (Cynomys ludovicianus) colonies in the western Great Plains. We studied the nesting response of the mountain plover (Charadrius montanus), a grassland bird that nests on prairie dog colonies, to plague-driven dynamics of prairie dog colonies at three sites in the western Great Plains. First, we examined plover nest distribution on colonies that were previously affected by plague, but that had been recovering (expanding) for at least 6 years. Plovers consistently nested in both young (colonized in the past 1–2 years) and old (colonized for 6 or more years) portions of prairie dog colonies in proportion to their availability. Second, we examined changes in plover nest frequency at two sites following plague epizootics, and found that mountain plover nest numbers declined relatively rapidly (≤2 years) on plague-affected colonies. Taken together, our findings indicate that available plover nesting habitat associated with prairie dog colonies closely tracks the area actively occupied by prairie dogs each year. Given the presence of plague throughout most of the mountain plover’s breeding range in the western Great Plains, important factors affecting plover populations likely include landscape features that determine the scale of plague outbreaks, the distance that plovers move in response to changing breeding habitat conditions, and the availability and quality of alternate breeding habitat within the landscape.  相似文献   
994.
The land cover pattern in the Lake Balaton catchment (Hungary) has been changing since decollectivization in the 1990s. These land cover changes significantly impact the landscape connectivity, controlling the influx of sediments into the lake. A comparison of high resolution land cover maps from 1981, 2000 and 2005 showed a significant extensification of the agriculture with land cover conversions from arable land and vineyards to grassland and forest. For each land unit transition probabilities were assessed using logistic regression techniques to evaluate to which extent land cover changes are controlled by physical or socio-economic parameters. A stochastic land cover allocation algorithm was applied to generate future land cover patterns. The landscape connectivity for each of the simulated land cover patterns was assessed by means of a distributed routing algorithm. The simulations suggest that further land abandonment in the upslope parts of the catchment will cause a non-linear reduction of average soil erosion rates. The changes, however, have a relatively low impact on the sediment volume entering the lake because of the land unit’s poor connectivity with permanent river channels. The major contributors to the lakes sediment load are the vineyards near the lakeshore. They are likely to be maintained because of their touristic value. A significant reduction of the total sediment input in the lake can be expected only if soil conservation measures in the vineyards near the shorelines are undertaken.  相似文献   
995.
Customary land-use practices create distinctive cultural landscapes, including landscapes where abandoned settlements host vegetation that attracts wild animals. Understanding how landscape patterns relate to land-use history can help clarify the ecological effects of particular land uses. This study examines relationships between chimpanzee habitat selection and Maninka settlement practice, to determine how settlement history has affected chimpanzee habitat in Mali’s Bafing Biosphere Reserve, where conservation practitioners assume that the characteristic settlement pattern reflects a process of settlement expansion into undisturbed habitat. Three types of data are reported: (1) ethnographic interviews on settlement history and practice; (2) systematic sampling of chimpanzee habitat use; and (3) ground-based mapping of settlement sites, surface water, and fruit-tree patches. These data show that the Maninka have a shifting settlement system, meaning that most sites are occupied for only relatively brief periods; and that some abandoned settlement sites host fruit-tree patches that are seasonally important chimpanzee habitat. Two main conclusions are: (1) settlement expansion has not occurred; instead, historic settlement has created habitat that is both attractive and available to chimpanzees. Anthropogenic habitat does not appear to be vital for chimpanzee survival, but it spatially and temporally supplements natural habitats. (2) Conservation policies meant to reduce the presumed threat of settlement expansion may have initiated an unintended, long-term threat of habitat loss for chimpanzees. While settlement practices may be a component of short-term threats to chimpanzees, such as hunting, when addressing these threats conservation practitioners should consider long-term settlement processes to avoid creating new threats.  相似文献   
996.
Wind farms are positioned in open landscapes and may cause loss of wildlife habitat due to disturbance, fragmentation, and infrastructure development. Especially flocking geese, swans, ducks and waders are regarded as vulnerable to wind farm development. We compared past and current displacement effects of two onshore wind farms and a line of land-based turbines on spring-staging pink-footed geese (Anser brachyrhynchus) to see if there was evidence of habituation. In one wind farm area, geese previously (1998) (Larsen and Madsen 2000) kept a distance of c. 200 m (the distance at which 50% of peak densities is reached) and they did not go between the turbines; today (2008) they keep a distance of c. 100 m, but do still not enter the wind farm area. In another wind farm, where foraging geese previously (2000) kept a distance of more than 100 m and did not enter the wind farm, they now (2008) forage between the wind turbines and keep a distance of c. 40 m to turbines. In 1998, geese kept a distance of 125 m to a line of turbines, compared to 50 m now. We conclude that geese have behaviorally adapted to changing landscapes created by wind farms. The difference in avoidance between the sites may be due to the sizes of the turbines which in this study were small in both rotor-swept area and in height compared to more recent “industry standard” of 2.5 and 3.0 MW turbines. The study points to the need for longer term studies to properly assess the impact of wind farms on wildlife, including consequent increased risks from inclement weather events of feeding, rafting, and migrating waterfowl.  相似文献   
997.
Invasions resulting in the transformation of one ecosystem to another are an increasingly widespread phenomenon. While it is clear that these conversions, particularly between grassland and shrubland systems, have severe consequences, it is often less clear which factors are associated with these conversions. We resampled plots from the 1930s (Weislander VTMs) to test whether two widely assumed factors, changes in fire frequency and nitrogen deposition, are associated with the conversion of coastal sage scrublands to exotic grasslands in southern California. Over the 76-year period, coastal sage scrub cover declined by 49%, being replaced predominantly by exotic grassland species. Grassland encroachment was positively correlated with increased fire frequency and, in areas with low fire frequencies, air pollution (percent fossil carbon as indicated by ∂14C, likely correlated with nitrogen deposition). We conclude that increases in fire frequency and air pollution over the last several decades in southern California may have facilitated the conversion of coastal sage shrubland to exotic grassland systems.  相似文献   
998.
Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.  相似文献   
999.
1000.
The objective of this paper is to identify land-cover types where fire incidence is higher (preferred) or lower (avoided) than expected from a random null model. Fire selectivity may be characterized by the number of fires expected in a given land-cover class and by the mean surface area each fire will burn. These two components of fire pattern are usually independent of each other. For instance, fire number is usually connected with socioeconomic causes whereas fire size is largely controlled by fuel continuity. Therefore, on the basis of available fire history data for Sardinia (Italy) for the period 2000–2004 we analyzed fire selectivity of given land-cover classes keeping both variables separate from each other. The results obtained from analysis of 13,377 fires show that for most land-cover classes fire behaves selectively, with marked preference (or avoidance) in terms of both fire number and fire size. Fire number is higher than expected by chance alone in urban and agricultural areas. In contrast, in forests, grasslands, and shrublands, fire number is lower than expected. In grasslands and shrublands mean fire size is significantly larger than expected from a random null model whereas in urban areas, permanent crops, and heterogeneous agricultural areas there is significant resistance to fire spread. Finally, as concerns mean fire size, in our study area forests and arable land burn in proportion to their availability without any significant tendency toward fire preference or avoidance. The results obtained in this study contribute to fire risk assessment on the landscape scale, indicating that risk of wildfire is closely related to land cover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号