首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18108篇
  免费   73篇
林业   3936篇
农学   1333篇
基础科学   141篇
  3091篇
综合类   869篇
农作物   2130篇
水产渔业   1853篇
畜牧兽医   1737篇
园艺   1133篇
植物保护   1958篇
  2021年   28篇
  2020年   24篇
  2019年   31篇
  2018年   2767篇
  2017年   2721篇
  2016年   1208篇
  2015年   95篇
  2014年   51篇
  2013年   97篇
  2012年   859篇
  2011年   2198篇
  2010年   2133篇
  2009年   1297篇
  2008年   1377篇
  2007年   1646篇
  2006年   106篇
  2005年   155篇
  2004年   160篇
  2003年   203篇
  2002年   117篇
  2001年   41篇
  2000年   80篇
  1999年   27篇
  1998年   20篇
  1997年   17篇
  1993年   27篇
  1992年   23篇
  1991年   23篇
  1990年   19篇
  1989年   31篇
  1988年   25篇
  1987年   22篇
  1986年   20篇
  1985年   19篇
  1984年   27篇
  1983年   15篇
  1979年   25篇
  1978年   14篇
  1977年   12篇
  1975年   12篇
  1974年   12篇
  1973年   13篇
  1972年   27篇
  1971年   12篇
  1970年   18篇
  1969年   17篇
  1968年   16篇
  1967年   18篇
  1966年   13篇
  1965年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and their influence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Three broad areas of potential risks from a changing climate were described: increased loss from wheat rusts, new rust pathotypes evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen leading to increased inoculum production. If changed weather conditions were to accelerate the life cycle of a pathogen, the increased inoculum can lead to severe rust epidemics in many environments. Likewise should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new pathotypes which could increase the rate of appearance of new virulences. The effectiveness of some rust resistance genes is influenced by temperature and crop development stage. Climate change may directly or indirectly influence the effectiveness of some resistance genes but this can not be ascertained due to a complete lack of knowledge. Since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. Leadership within the Borlaug Global Rust Initiative (BGRI) is needed to broker research on rust evolution and the durability of resistance under climate change.  相似文献   
992.
Five inbred lines, 10 single cross maize (Zea mays L.) hybrids and two standard cultivars as check were used to study the combining abilities and heterosis under three environmental conditions. Random amplified polymorphic DNAs (RAPDs) markers were used to study the genetic diversity (GD) and further to analyze relationship of RAPDs based GD with combining ability and heterosis in short duration maize. Spearman’s rank correlation coefficients and linear regressions were analyzed to identify the most important factor determining heterosis and per se performance of the hybrids. Variances due to general combining ability (GCA), specific combining ability (SCA) and their interactions with environment were found to be significant. Twenty random primers generated 179 RAPD fragments. Of these, 102 RAPD fragments were polymorphic. GD was determined using Jaccard’s similarity coefficient, and a dendogram was constructed by UPGMA cluster analysis. The RAPDs based GD exhibited non-significant negative or positive association, non-significant linear regression along with very low coefficient of determination (R 2) with SCA, high and mid parent heterosis (HP and MP) and per se performance of the hybrids. Significant positive correlations and regressions along with high coefficients of determination were recorded for SCA with HP, MP and per se performance of the hybrids. The HP and MP also established significant positive association and linear regression along with high coefficient of determination with per se performance of hybrids whereas the parental mean did not establish any significant correlations with the GD, HPH, MPH and grain yield of F1s. The present investigation, therefore, did not find any role of RAPDs based GD in determining hybrid heterosis and hybrid performance in short duration sub-tropical maize. The SCA, however, has emerged as the most important factor in determination of heterosis as well as per se performance of the hybrids in short duration maize.  相似文献   
993.
Tomatoes are the most important vegetable, globally as well as in Germany. Outdoor tomato production is seriously impaired due to increasing infections with evolving late blight (Phytophthora infestans) populations. Within organic agriculture, research is being conducted to develop regionally adapted and open pollinated cultivars of outdoor tomatoes with late blight field resistance. In the present experiment, three crosses, including wild, cocktail, and beefsteak tomatoes, were selected for field resistance against late blight in F2 at one location per cross. The comparison of positive and negative selection in F3 revealed the selection of single F2 plants to be efficient in all three crosses. F2 selection has proved to be a robust and efficient tool for breeding programs. The correlated response to selection in other traits, including yield, fruit weight, days to maturity, harvest period, and plant height, depended on the cross. It was evident that selection for desired traits combined with field resistance against late blight is promising, even in wide crosses. The most undesired attribute of wild tomatoes is the formation of shoots on leaves and in inflorescences. No correlation was observed between field resistance and shoot formation, allowing the selection of genotypes with improved field resistance and yield, but without morphological disadvantages.  相似文献   
994.
Cucumber (Cucumis sativus L.) is a major cucurbit vegetable species whose genetic base has been drastically reduced during its domestication. The crop’s narrow genetic base (3–12% DNA polymorphism) has resulted from the use of limited genetic material and intense selection during plant improvement. Recently, however, interspecific hybridization has been successful in Cucumis via mating of C. hystrix Chakr. and C. sativus, which resulted in the amphidiploid C. hytivus. We report herein a marker-assisted strategy for increasing genetic diversity in cucumber through introgression backcrossing employing C. hytivus. The comparatively late-flowering but high-yielding, indeterminate, monoecious line WI 7012A (P1; donor parent) derived from a C. hytivus × C. sativus-derived line (long-fruited Chinese C. sativus cv. Beijingjietou) was initially crossed to the determinate, gynoecious C. sativus line WI 7023A (P2; recurrent parent 1), and then advanced backcross generation progeny (BC2) were crossed with the gynoecious indeterminate line WI 9-6A (P3; recurrent parent 2). More specifically, a single F1 individual (P1 × P2) was backcrossed to P2, and then BC progeny were crossed to P2 and P3, where marker-assisted selection (MAS) for genetic diversity (8 mapped and 16 unmapped markers; designated Sel) or no selection (designated NSel) was applied to produce BC3P2 (Sel) and BC3P3 (Sel), and BC2P2 (NSel) and BC2P2S1 (NSel) progeny. Relative vegetative growth, number of lateral branches (LB), days to flowering (DF), yield (fruit number), and fruit quality [as measured by length:diameter (L:D) and endocarp:total diameter (E:T) ratios] were assessed in parents and cross-progeny. DF varied from ~20 (BC3P2Sel) to ~25 days (BC2P3Sel) among the populations examined, where progeny derived from P2 possessed the shortest DF. Differences in cumulative yield among the populations over six harvests were detected, varying from ~8 fruits per plant in BC3P2 (Sel) to ~39 fruits per plant in BC2P3 (Sel). Although the vigorous vegetative growth of line P1 was observed in its backcross progeny, highly heterozygous and polymorphic backcross progeny derived from P3 were comparatively more vigorous and bore many high-quality fruit. Response to selection was detected for LB, DF, L:D, and E:T, but the effectiveness of MAS depended upon the parental lines used. Data indicate that the genetic diversity of commercial cucumber can be increased by introgression of the C. hystrix genome through backcrossing.  相似文献   
995.
Eighty-eight aromatic cultivars collected from Maharashtra state were assessed for determinants of kernel quality (kernel size-shape, test weight and aroma) and grain morphology such as awning, lemma and palea characters, pubescence, colour of sterile lemma and apiculus colour. We, report seven cultivars—‘Girga’, ‘Kothmirsal’, ‘Kala bhat’, ‘Chimansal’, ‘Jiri’, ‘Kalsal’ ‘Velchi’ and ‘Kali kumud’ as indigenous to southern India. Of the 69 cultivars characterized for agronomic traits 36 cultivars were exquisite genotypes and possessed one or more superior traits such as early flowering, dwarf stature, higher number of productive tiller per plant; long panicles; higher number of filled grains per panicle and strong aroma. Variability in aromatic cultivars was assessed on the basis of nine traits placed aromatic rice cultivars in five clusters. Number of cultivars in each cluster ranged from 1 to 33. 27 significant correlations were obtained in the physical, agronomic and grain morphology traits. Aroma was found to be negatively associated with days to 50% flowering as well as with filled grains per panicle. However, correlation between panicle length and effective tillers with aroma was not observed. Therefore, to increase the yield, improvement in length of panicle and increasing number of productive tillers in medium or mild scented cultivars would be the best strategy.  相似文献   
996.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development. The objective of this study was to identify novel quantitative trait loci (QTL) associated with improved heat tolerance in wheat (Triticum aestivum L.) and to confirm previous QTL results. To accomplish this, a recombinant inbred line (RIL) population was subjected to a three-day 38°C daytime heat stress treatment during early grain-filling. At maturity, a heat susceptibility index (HSI) was calculated from the reduction of three main spike yield components; kernel number, total kernel weight, and single kernel weight. The HSI, as well as temperature depression (TD) of the main spike and main flag leaf during heat stress were used as phenotypic measures of heat tolerance. QTL analysis identified 14 QTL for HSI, with individual QTL explaining from 4.5 to 19.3% of the phenotypic variance. Seven of these QTL co-localized for both TD and HSI. At all seven loci, the allele for a cooler flag leaf or spike temperature (up to 0.81°C) was associated with greater heat tolerance, indicated by a lower HSI. In a comparison to previous QTL results in a RIL population utilizing the same source of heat tolerance, seven genome regions for heat tolerance were consistently detected across populations. The genetic effect of combining three of these QTL, located on chromosomes 1B, 5A, and 6D, demonstrate the potential benefit of selecting for multiple heat tolerance alleles simultaneously. The genome regions identified in this study serve as potential target regions for fine-mapping and development of molecular markers for more rapid development of heat tolerant germplasm.  相似文献   
997.
Self-incompatibility (SI) is a widespread mechanism in flowering plants that promotes outbreeding and thereby increases genetic diversity. Recognition specificity in Brassica is achieved by the interaction of the female determinant S-receptor kinase (SRK) and its ligand, the male determinant S-locus protein 11 (SP11). The interaction between SP11 and SRK triggers the signaling cascade in an S-haplotype-specific manner and results in the rejection of self-pollen, but the signal components involved are still not well characterized. S haplotypes are widespread in self-compatible amphidiploid B. napus, and the interaction of heterozygous S haplotypes causes the loss of SI. This review highlights the recent advances made towards understanding the genetic analysis, distribution, and evolution of S haplotypes, the signal factors, and the potential of SI in B. napus hybrid breeding program.  相似文献   
998.
An Agrobacterium-mediated transformation procedure for soybean [Glycine max L. Merrill] proliferating somatic embryos is here described. The Agrobacterium tumefaciens LBA4404 strain harboring pTOK233, pCAMBIA1390-olp or pH7WG2Dwrky plasmids was used to mediate gene transfer into the plant genome. Prior to Agrobacterium inoculation, proliferative soybean embryogenic clusters were microwounded by DNA-free tungsten particle bombardment. Three independent transformation experiments were performed. In Experiment I, 26 transgenic plants were obtained from a unique clone of cv Bragg, while 580 plants were recovered from 105 clones of cv IAS5. In Experiment II, a single hygromycin-resistant clone of cv BRSMG68 Vencedora was recovered and gave rise to five plants. In Experiment III, 19 plants of cv Bragg and 48 plants of IAS5 were recovered, representing five and 14 independent transformation events, respectively. PCR and Southern analyses confirmed the transgenes’ integration into plant genomes. Transgenic plants were fertile. They flowered, set pods and seeds. Transgene segregation in two T1 progenies fits the Mendelian pattern (3:1 transgenic:non-transgenic plants). This is the first report of transgenic fertile soybean plants obtained from somatic embryogenic tissues transformed by the system that combines DNA-free particle bombardment and Agrobacterium.  相似文献   
999.
Shelley Jansky 《Euphytica》2011,178(2):273-281
Valuable genetic diversity in diploid wild Solanum species can be accessed through crosses to haploids (2n = 2×) of the tetraploid cultivated potato, Solanum tuberosum. Haploid-wild species hybrids segregate for the ability to tuberize in the field. In addition, they vary in male fertility, vine size, stolon length, and tuber size. In this study, three haploids were crossed with nine diploid wild Solanum species and 27 hybrid families were evaluated in the field for two years. The proportion of male fertile hybrid clones varied depending on the wild species parent. A large effect of the female parent was detected for vine size, stolon length, tuber size, percent tuberization, and percent plants selected for agronomic quality. An exceptional haploid (US-W4) was identified for the production of agronomically desirable haploid-wild species hybrids. In hybrids derived from US-W4, differences among wild species parents were observed for agronomic quality. Superior hybrids were produced by S. berthaultii and S. microdontum. Reciprocal crosses were evaluated for a subset of families. When the wild species was used as the female parent, male fertility was restored, but tuberization and tuber size were reduced. Careful selection of both haploid and wild species parents can result in a large proportion of fertile, agronomically desirable hybrid offspring.  相似文献   
1000.
Drought stress is a major abiotic constraint limiting crop production worldwide. Screening for drought tolerance and the traits that enhance drought tolerance is not straightforward in large mapping populations. In this study, we investigated the possibility of screening a mapping population in vitro for PEG-induced water deficit stress and recovery potential. We have measured several shoot and root growth parameters or traits in the C × E diploid potato mapping population. Significant variation was observed for genotype-specific responses to water deficit and recovery potential. Genetic variation and heritability estimates were high to very high for the measured traits depending on growth conditions. In order to identify potato QTLs for drought tolerance and recovery potential an SNP marker-rich integrated linkage map was used. A total of 23 QTLs were detected under control, stress and recovery treatments explaining 10.3–22.4% of the variance for each phenotypic trait. Among these, 10 QTLs were located on chromosome 2. Three QTLs involved in the important trait root to shoot ratio were identified on linkage groups 2, 3 and 8. These loci explained together 41.1% of the variance for this trait, and may be breeding targets for stress tolerance and yield in the field as well. The SNP markers derived from EST sequences underlying these QTLs led to the identification of putative candidate genes for further study in potato. This study constitutes the first knowledge of in vitro screening of a mapping population for drought tolerance in potato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号