首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2094篇
  免费   123篇
  国内免费   10篇
林业   192篇
农学   148篇
基础科学   39篇
  633篇
综合类   172篇
农作物   191篇
水产渔业   154篇
畜牧兽医   451篇
园艺   42篇
植物保护   205篇
  2023年   21篇
  2022年   63篇
  2021年   94篇
  2020年   101篇
  2019年   119篇
  2018年   148篇
  2017年   145篇
  2016年   108篇
  2015年   59篇
  2014年   80篇
  2013年   216篇
  2012年   108篇
  2011年   130篇
  2010年   93篇
  2009年   74篇
  2008年   91篇
  2007年   48篇
  2006年   63篇
  2005年   35篇
  2004年   31篇
  2003年   39篇
  2002年   36篇
  2001年   35篇
  2000年   26篇
  1999年   21篇
  1998年   14篇
  1997年   17篇
  1996年   18篇
  1993年   6篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   10篇
  1981年   9篇
  1980年   8篇
  1979年   8篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1973年   9篇
  1971年   7篇
  1970年   6篇
  1969年   7篇
  1968年   7篇
排序方式: 共有2227条查询结果,搜索用时 15 毫秒
991.
A pot experiment was conducted to elucidate the effects of inoculating five exopolysaccharide- (EPS-) producing bacterial strains on the dry matter yield and the uptake of K+, Na+, and Ca2+ by wheat seedlings grown in a moderately saline soil. The bacteria were isolated from the rhizosphere soil (RS) of wheat grown in a salt-affected soil and included Aeromonas hydrophila/caviae (strain MAS-765), Bacillus insolitus (strain MAS17), and Bacillus sp. (strains MAS617, MAS620 and MAS820). The inoculation substantially increased the dry matter yield of roots (149–527% increase) and shoots (85–281% increase), and the mass of RS (176–790% increase). All the strains, except MAS617, also increased the RS mass/root mass ratio as well as the population density of EPS bacteria on the rhizoplane, and both these parameters were significantly correlated with the content of water-insoluble saccharides in the RS. Inoculation restricted Na+ uptake by roots, which was not attributable to the binding of Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity. The decreased Na+ uptake by roots of inoculated than uninoculated plants was probably caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the higher proportion of the root zones covered with soil sheaths in inoculated treatments. Among the strains tested, MAS820 was the most efficient in all respects, whereas MAS617 was the least effective. Results suggested that inoculating selected EPS-producing bacteria could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   
992.
ABSTRACT

Climate change is imposing high temperature resulting in prolonged drought episodes and shrinking of fresh water resources across the globe. In this scenario, even drought tolerant crops like quinoa are also losing significant yield. However, this study was planned to investigate the impact of drought on quinoa at critical growth stages and bacterial inoculation to improve drought tolerance. Drought was imposed by maintaining 25% pot water holding capacity (PWC) at multiple leaf, flowering, and seed filling stage (DSFS), while 80% PWC was considered as control. Three strains of plant growth promoting rhizobacteria (PGPR) named as: Bacillus licheniformis, Pseudomonas fluorescens, and Azospirillum brasilense were inoculated with quinoa seeds before sowing with respect to drought treatments. PGPR inoculation mitigated the drastic effects of drought by improving crop growth, net assimilation rate, water use efficiency, leaf chlorophyll, and phenolic contents, all of these ultimately contributed to improvement in grain yield and its contributing attributes. Moreover, PGPR markedly improves the grain quality attributes including protein, phosphorus, and potassium contents. Principal component analysis linked the different scales of study and demonstrated the potential of physio-biochemical traits to explain the quinoa yield variations under drought condition with response to PGPR inoculation. Among different PGPR, A. brasilense was found most effective both under normal and drought conditions. Overall, DSFS has more detrimental effects among critical growth stages of quinoa and A. brasilense can be used as a shotgun tactic to ameliorate drought stress in quinoa.  相似文献   
993.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   
994.
A study was carried out in a specially designed settling column to investigate the settling characteristics of effluents arising from Karachi tanneries. The Jar-tests were conducted to determine the optimum dosage of coagulants such as potash alum and ferric chloride to maximize the removal of suspended solids (S.S) from the wastes. For alum, the optimum dosage was found to be 150 mg L-1, whereas with ferric chloride it was 30 mg L-1. Experiments carried out in the settling column with the optimum coagulant dosages showed that the coagulation with ferric chloride was much better than with alum, as it removes about 84% S.S from the wastes compared to 70% removal obtained in case of alum. Design curves in terms of percent removal of S.S. vs loading rate and detention time were constructed using data obtained from settling column. These curves can be used in designing the settling tanks employed in the tannery wastes treatment plants.  相似文献   
995.
In this study, impact of silicon (Si) application on wheat performance under drought stress is studied. Experimental soil was sandy clay loam with an average pH of 8.01, electrical conductivity (EC) of 2.36 dSm?1, and calcium carbonate (CaCO3) content of 2.16%. Soil was severely deficient in organic matter (<1%). Average extractable phosphorus (P) and potassium (K) concentration was 230 and 5.21 mg kg?1, respectively. Silicon potassium metasilicate (K2SiO3) was applied at the rate of 0 and 12 kg/ha with three canal water irrigation frequencies including two, three, and four under randomized complete block design (RCBD) factorial fashion with three replications. Results indicated that drought stress significantly reduced plant height, spike length, shoot fresh weight, and number of spikelets/spike, eventually enhancing wheat yield. Concentration of K+ in shoot (28.65 mg g?1) and grains (3.51 mg g?1) increased with Si application, which helped to maintain water potential in plant even under reduced moisture level in plants and soil, ultimately producing more yield and biomass under drought stress conditions.  相似文献   
996.
2-Keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil   总被引:5,自引:0,他引:5  
2-Keto-4-methylthiobutyric acid (KMBA) has been identified as an intermediate in methionine-derived ethylene (C2H4) biosynthesis by microbial cultures. This study was designed to assess the effectiveness of KMBA as an C2H4 precursor in soil. Gas chromatographic analysis indicated that amendment with KMBA (up to 10 mM) stimulated the biosynthesis of C2H4 in two Pakistani soils. Results also revealed that substrate- (KMBA)-dependent C2H4 production was inhibited when the soils were amended either with glucose (as a C source), NH4NO3 (N source) or antibiotics. The KMBA-derived C2H4 biosynthesis in both soils was maximum when the soil suspension was amended with 10 mM substrate and incubated at pH 7.5 for a period of 120 h at 35°C with shaking. Comparison of soils revealed that C2H4 production was relatively greater in a silty clay loam S1 (containing 1.15% organic C) soil compared to a loamy S2 (containing 0.54% organic C) soil. KMBA was found to be an equally effective substrate of C2H4 when compared with another intermediate, 1-aminocyclopropane-1-carboxylic acid (ACC), whereas, f-ketglutaric acid failed to serve as an C2H4 substrate in soil. As far as we know, this is the first study reporting KMBA-dependent C2H4 production in soil.  相似文献   
997.
Several fungi were isolated from rhizosphere soils of various crops through enrichment on l-methionine (l-MET) as a sole C and N source. These fungi were examined for their C2H4 production potential in vitro. GC-FID analysis indicated that 78%, 83%, 89% and 72% of fungi isolated from rhizosphere soil of wheat, maize, potato and tomato, respectively, produced C2H4 from substrate l-MET. Eight of the most efficient C2H4-producing fungal isolates (two from each crop) were further tested for their ability to produce C2H4 from 2-keto-4-methylthiobutyric acid (KMBA) and α-ketoglutaric acid (α-KGA). Interestingly, all eight fungi produced C2H4 from KMBA, but none used α-KGA as C2H4 precursor. This result implies that the MET→KMBA→C2H4 pathway was most likely operating in these fungi. The most efficient C2H4 producer fungus (isolated from maize rhizosphere soil) was identified as Aspergillus terreus; this isolate was further studied to determine the optimal conditions for C2H4 production from l-MET. It was observed that a substrate (l-MET) concentration of 10 mmol l−1, a glucose (C-source) concentration of 6.0 g L−1, no nitrogen, a pH of 6.0, an incubation temperature of 30 °C and an incubation time of 72 h were optimal conditions for l-MET-derived C2H4 biosynthesis by Aspergillus terreus. In addition, C2H4 released from precursor (l-MET) by Aspergillus terreus significantly affected the seedling length and stem diameter of etiolated pea seedlings in both sterilized and non-sterilized soils compared to a control. C2H4-producing microflora may be ubiquitous in soil, and the availability of a substrate like l-MET could enhance C2H4 synthesis in the rhizosphere of a plant, in turn evoking a physiological response. As far as we know, this study represents the first comprehensive screening of rhizosphere fungi for their ability to produce C2H4 from l-MET and KMBA.  相似文献   
998.
The causes and control of type 2 diabetes mellitus are not clear, but there is strong evidence that dietary factors are involved in its regulation and prevention. We have shown that extracts from cinnamon enhance the activity of insulin. The objective of this study was to isolate and characterize insulin-enhancing complexes from cinnamon that may be involved in the alleviation or possible prevention and control of glucose intolerance and diabetes. Water-soluble polyphenol polymers from cinnamon that increase insulin-dependent in vitro glucose metabolism roughly 20-fold and display antioxidant activity were isolated and characterized by nuclear magnetic resonance and mass spectroscopy. The polymers were composed of monomeric units with a molecular mass of 288. Two trimers with a molecular mass of 864 and a tetramer with a mass of 1152 were isolated. Their protonated molecular masses indicated that they are A type doubly linked procyanidin oligomers of the catechins and/or epicatechins. These polyphenolic polymers found in cinnamon may function as antioxidants, potentiate insulin action, and may be beneficial in the control of glucose intolerance and diabetes.  相似文献   
999.
1000.
Three new compounds, (7E)-2beta,3alpha-dihydroxy-megastigm-7-en-9-one (1), 3-[5,7-dihydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-8-yl]-4-methoxybenzoic acid (2), and 4'-O-methyl myricetin 3-O-(6-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside (3), were isolated from Ginkgo biloba, together with 27 known compounds. The structures of the new compounds were determined primarily from 1D- and 2D-NMR analysis. The 4-O-methylbenzoic acid structural feature at C-8 in 2 is encountered for the first time. The antioxidant activities of 29 compounds isolated from Ginkgo biloba were evaluated on intracellular reactive oxygen species in HL-60 cells. It was found that quercetin, kampferol, and tamarixetin had antioxidant activity that was approximately 3-fold greater than that of their respective glycosides and also approximately 3-fold greater than that of a standard ascorbic acid with an IC(50) at maximum effectiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号