首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
林业   10篇
农学   1篇
  6篇
综合类   18篇
畜牧兽医   63篇
植物保护   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1998年   7篇
  1997年   10篇
  1996年   9篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
61.
Container-grown seedlings of Acacia tortilis Forsk. Hayne and A. xanthophloea Benth. were watered either every other day (well watered) or every 7 days (water-stressed) for 1 year in a greenhouse. Total plant dry mass (T(dm)), carbon allocation and water relations were measured monthly. Differences in leaf area (LA) accounted for differences in T(dm) between the species, and between well-watered and water-stressed plants. Reduction in LA as a result of water stress was attributed to reduced leaf initiation, leaf growth rate and leaf size. When subjected to prolonged water stress, Acacia xanthophloea wilted more rapidly than A. tortilis and, unlike A. tortilis, lost both leaves and branches. These differences between species were attributed to differences in the allocation of carbon between leaves and roots and in the ability to adjust osmotically. Rapid recovery in A. xanthophloea following the prolonged water-stress treatment was attributed to high cell wall elasticity. Previous exposure to water stress contributed to water-stress resistance and improved recovery after stress.  相似文献   
62.
A continuous record of atmospheric lead since 12,370 carbon-14 years before the present (14C yr BP) is preserved in a Swiss peat bog. Enhanced fluxes caused by climate changes reached their maxima 10, 590 (14)C yr BP (Younger Dryas) and 8230 (14)C yr BP. Soil erosion caused by forest clearing and agricultural tillage increased lead deposition after 5320 (14)C yr BP. Increasing lead/scandium and decreasing lead-206/lead-207 beginning 3000 (14)C yr BP indicate the beginning of lead pollution from mining and smelting, and anthropogenic sources have dominated lead emissions ever since. The greatest lead flux (15.7 milligrams per square meter per year in A.D. 1979) was 1570 times the natural, background value (0.01 milligram per square meter per year from 8030 to 5320 (14)C yr BP).  相似文献   
63.
64.
The aim of this study was to assess the efficacy and safety of deslorelin acetate implants on domestic queen puberty postponement. Thirty, 114.4 ± 12.7 days old, 1.5 ± 0.1 kg prepubertal crossbred female cats were included in this study. The animals were kept under a positive photoperiod and randomly assigned to deslorelin acetate 4.7 mg SC implants (n = 15) or to a non‐treated control group (n = 15). The queens were followed up daily and weighed weekly until puberty. Vaginal cytology was also carried out three times a week. Puberty was diagnosed by the presence of the typical oestrous behaviour and vaginal cytology findings. At puberty, ovariectomy was performed and the gonads grossly described. Age (281.2 ± 21.6 vs 177.8 ± 10.8; p < 0.01) but not weight (2.6 ± 0.1 vs 2.5 ± 0.1; p > 0.1) at puberty differed between the deslorelin and control groups, respectively. One deslorelin‐treated female showed an oestrous response and another showed clinical signs of pyometra after the implants. Deslorelin‐treated ovaries appeared small, while control gonads were normal. It was concluded that long‐term‐release deslorelin, administered at approximately 50% adult body weight, postponed feline puberty without altering growing rate.  相似文献   
65.
The study aimed to (1) define the proportion of dogs with immune-mediated haemolytic anaemia (IMHA) that have associative and non-associative disease and (2) evaluate the utility of screening diagnostic tests in identifying potential triggers of associative IMHA. Medical records of 78 dogs diagnosed with IMHA at a specialist hospital in Sydney from July 2008 to August 2017 were reviewed. The original diagnosis was revised according to published guidelines (Garden et al., 2019) as either diagnostic, supportive or suspicious for IMHA. Associative IMHA was confirmed if immunosuppressive therapy was discontinued within six weeks of effective treatment of a potential trigger. Associative IMHA was considered possible when a potential trigger was identified but its significance could not be confirmed. Associative IMHA was confirmed (3) or suspected (7) in 10 dogs (13%, confidence interval [CI] 7.1%–22%), with 68 cases presumed to be non-associative. Associative IMHA was present in 3/29 (10.3%) of dogs with criteria diagnostic for IMHA, 4/42 (9.5%) of dogs with criteria supportive for IMHA and 3/7 (42.9%) of dogs with criteria suspicious for IMHA. Abdominal ultrasound was performed in 68 dogs and identified possible triggers in five (7.3%, CI 3.2% to 16%). Thoracic radiographs were performed in 70 dogs but did not identify any potential triggers (0%, CI 0% to 5.2%). Urine culture was performed in 22 dogs and was positive in three (14%, CI 4.7% to 33.3%). Routine screening tests, particularly thoracic radiographs, have a low yield in identifying potential triggers of associative IMHA, but are more likely to be useful in dogs fulfilling less stringent diagnostic criteria of IMHA.  相似文献   
66.
Interfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO2) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO2 continuous phase. Polystyrene-b-poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO2. These nonionic surfactants for CO2 were shown by SANS to be capable of emulsifying up to 20 percent by weight of a CO2-insoluble hydrocarbon into CO2. This result demonstrates the efficacy of surfactant-modified CO2 in reducing the large volumes of organic and halogenated solvent waste streams released into our environment by solvent-intensive manufacturing and process industries.  相似文献   
67.
Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.  相似文献   
68.
We studied limitations caused by variations in leaf temperature and soil water availability on photosynthetic electron transport rates calculated from foliar chlorophyll fluorescence analysis (U) in a natural deciduous forest canopy composed of shade-intolerant Populus tremula L. and shade-tolerant Tilia cordata Mill. In both species, there was a positive linear relationship between light-saturated U (Umax) per unit leaf area and mean seasonal integrated daily quantum flux density (Ss, mol per square m per day). Acclimation of leaf dry mass per area and nitrogen per area to growth irradiance largely accounted for this positive scaling. However, the slopes of the Umax versus Ss relationships were greater on days when leaf temperature was high than on days when leaf temperature was low. Overall, Umax varied 2.5-fold across a temperature range of 20-30 degrees C. Maximum stomatal conductance (Gmax) also scaled positively with Ss. Although Gmax observed during daily time courses, and stomatal conductances during Umax measurements declined in response to seasonally decreasing soil water contents, was insensitive to prolonged water stress, and was not strongly correlated with stomatal conductances during its estimation. These results suggest that photorespiration was an important electron sink when intercellular CO2 concentration was low because of closed stomata. Given that xanthophyll cycle pool size (VAZ, sum of violaxanthin, antheraxanthin, and zeaxanthin) may play an important role in dissipation of excess excitation energy, the response of VAZ to fluctuating light and temperature provided another possible explanation for the stable Umax. Xanthophyll cycle carotenoids per total leaf chlorophyll (VAZ/Chl) scaled positively with integrated light and negatively with daily minimum air temperature, whereas the correlation between VAZ/Chl and irradiance was best with integrated light averaged over 3 days preceding foliar sampling. We conclude that the potential capacity for electron transport is determined by long-term acclimation of U to certain canopy light conditions, and that the rapid adjustment of the capacity for excitation energy dissipation plays a significant part in the stabilization of this potential capacity. Sustained high capacity of photosynthetic electron transport during stress periods provides an explanation for the instantaneous response of U to short-term weather fluctuations, but also indicates that U restricts potential carbon gain under conditions of water limitation less than does stomatal conductance.  相似文献   
69.
Intraspecific variations in the water relations and stomatal response of Quercus ilex L. were analyzed under field conditions by comparing trees at two locations within a Mediterranean watershed (l'Avic, Catalonia, NE Spain). Distinct environmental gradients exist between the two sites (referred to as ridge top at 975 m and valley bottom at 700 m) with greater soil depth for water storage, reduced radiation, reduced wind and higher water vapor pressure deficits at the valley bottom than at the ridge top. Osmotic adjustment and changes in tissue elasticiity did not significantly increase drought resistance in the trees studied. The leaf-to-air vapor pressure difference (Deltaw) threshold for inducing stomatal closure was higher at the ridge top (15.6 kPa MPa(-1) +/- 0.5 SE) than at the valley bottom (9.8 kPa MPa(-1) +/- 1.0 SE). However, increases in Deltaw beyond the threshold were followed by greater reductions in leaf conductance of trees at the ridge top than at the valley bottom. At both sites, maximum leaf conductance was related to predawn shoot water potential which, in turn, was related to watershed stream flow. The effects of water deficits during the dry summer of 1989 were more severe in trees at the valley bottom than at the ridge top. During periods of high evaporative demand, site-specific differences in the control of water loss led to more conservative water use by trees at the ridge top and, thus, to even greater drought avoidance (higher predawn water potentials) in late summer.  相似文献   
70.
Modification of foliage exposition and morphology by seasonal average integrated quantum flux density (Qint) was investigated in the canopies of the shade-tolerant late-successional deciduous tree species Fagus orientalis Lipsky and Fagus sylvatica L. Because the leaves were not entirely flat anywhere in the canopy, the leaf lamina was considered to be three-dimensional and characterized by the cross-sectional angle between the leaf halves (theta). Both branch and lamina inclination angles with respect to the horizontal scaled positively with irradiance in the canopy, allowing light to penetrate to deeper canopy horizons. Lamina cross-sectional angle varied from 170 degrees in the most shaded leaves to 90-100 degrees in leaves in the top of the canopy. Thus, the degree of leaf rolling increased with increasing Qint, further reducing the light-interception efficiency of the upper-canopy leaves. Simulations of the dependence of foliage light-interception efficiency on theta demonstrated that decreases in theta primarily reduce the interception efficiency of direct irradiance, but that diffuse irradiance was equally efficiently intercepted over the entire range of theta values in our study. Despite strong alteration in foliage light-harvesting capacity within the canopy and greater transmittance of the upper crown compared with the lower canopy, mean incident irradiances varied more than 20-fold within the canopy, indicating inherent limitations in light partitioning within the canopy. This extensive canopy light gradient was paralleled by plastic changes in foliar structure and chemistry. Leaf dry mass per unit area varied 3-4-fold between the canopy top and bottom, providing an important means of scaling foliage nitrogen contents and photosynthetic capacity per unit area with Qint. Although leaf structure versus light relationships were qualitatively similar in all cases, there were important tree-to-tree and species-to-species variations, as well as evidence of differences in investments in structural compounds within the leaf lamina, possibly in response to contrasting leaf water availability in different trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号