首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   6篇
  国内免费   66篇
林业   4篇
农学   75篇
基础科学   4篇
  66篇
综合类   109篇
农作物   43篇
水产渔业   4篇
畜牧兽医   40篇
园艺   22篇
植物保护   26篇
  2023年   3篇
  2022年   17篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2017年   11篇
  2016年   26篇
  2015年   19篇
  2014年   30篇
  2013年   34篇
  2012年   23篇
  2011年   29篇
  2010年   20篇
  2009年   27篇
  2008年   35篇
  2007年   24篇
  2006年   16篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1962年   2篇
排序方式: 共有393条查询结果,搜索用时 46 毫秒
11.
为明确寒地冬小麦返青后各生育阶段光合生理特性对小麦植株生长发育及籽粒形成的影响,以东农冬麦1号为试验材料,对大田种植返青后不同生育阶段小麦叶片光合参数、叶绿素、总可溶性糖和蔗糖含量及籽粒总可溶性糖、蔗糖和淀粉含量等生理指标进行测定分析。结果表明,返青后,随着生育期延长,小麦叶片光合速率、蒸腾速率呈先上升后下降趋势,开花期达到最大值。在开花期之前,气孔导度与胞间CO2浓度均呈上升趋势,光合速率主要受气孔因素影响;开花期后气孔导度与胞间CO2浓度呈相反变化趋势,此时期影响光合速率降低的主要是非气孔因素。叶绿素含量先上升后下降,灌浆期达到最大值;总可溶性糖及蔗糖含量呈下降-上升-下降趋势;籽粒中淀粉含量随总可溶性糖和蔗糖含量的下降而上升。  相似文献   
12.
【目的】揭示猪CatSperB和CatSperG基因的存在、蛋白的结构特征、进化关系及时空表达特性。【方法】利用电子和分子克隆技术鉴定猪CatSperB和CatSperG基因全长cDNA,并利用定性RT-PCR和荧光定量RT-PCR进行CatSperB和CatSperG基因的时空表达研究。【结果】①分别获得了3 508 bp CatSperB和3 715 bp CatSperG电子转录子,分别包含3 330和3 483 bp开放阅读框,并经TA克隆测序验证,其CDS序列与人、牛、马和狗等的CatSperB和CatSperG基因的序列相似性在80%以上;②CatSperB分子质量为125.79 kD,为稳定蛋白;CatSperG分子质量为133.40 kD,为不稳定蛋白;③CatSperB和CatSperG 都包含 7 个通道蛋白保守的跨膜结构域,CatSperG蛋白C端含一个超螺旋结构,而CatSperB蛋白无明显的超螺旋结构信号;猪CatSperB和CatSperG与牛、狗和马的CatSperB和CatSperG蛋白同源关系较近,与人和小鼠的同源关系较远;④RT-PCR分析表明,CatSperB和CatSperG基因主要在睾丸中表达,但CatSperB在其它组织也有表达信号;⑤CatSperB和CatSperG基因mRNA表达水平在猪性发育的重要阶段,精子发生(60日龄)、初情期(90日龄)和性成熟(150日龄)前后都有显著提高(P<0.05)。【结论】获得了猪CatSperB和CatSperG基因的cDNA克隆及其一系列生物信息学参数,揭示了CatSperB和CatSperG蛋白含7个保守的跨膜结构域及不同物种间的进化关系,证实CatSperB和CatSperG基因主要在睾丸表达,且其mRNA表达变化与公猪的性发育相一致。  相似文献   
13.
普通小麦主要农艺性状的全基因组关联分析   总被引:1,自引:0,他引:1  
为解析小麦复杂农艺性状的遗传机制,本研究以150份小麦品种(系)为自然群体,在4个环境条件下测定了9个主要农艺性状,利用小麦35K SNP芯片,结合5种关联模型(Q、PCA、K、PCA+K、Q+K),进行全基因组关联分析。结果表明,全基因组多态性信息量PIC的范围为0.0950~0.5000,最小等位基因频率MAF值为0.0500~0.5000;群体结构分析和PCA分析均表明参试材料可分为两个亚群;连锁不平衡分析发现A基因组、B基因组、D基因组和全基因组的LD衰减距离分别为4.7、8、11和6 Mb。9个性状共检测到652个显著的关联位点(P≤0.001),其中21个SNP在2个或2个以上的环境中被重复检测到,分布在1A(1)、1B(4)、2A(3)、2D(2)、3A(1)、5A(1)、5B(5)、6A(1)、6B(2)和7D(3)染色体上; 1个SNP标记的物理位置未知, 3个SNP标记同时与2个性状显著关联;单个SNP的表型贡献率为7.67%~18.79%。8个优势等位变异在供试群体中所占比例较低,筛选出14个可能与小麦农艺性状相关的候选基因,其中TraesCS5B02G237200、TraesCS7D02G129700和TraesCS1B02G426300可能在植物抵御生物与非生物胁迫中起作用,TraesCS5B02G010800和TraesCS7D02G436800可能与植物激素的合成和响应有关,TraesCS2A02G092200可能与植物细胞壁的增强有关, TraesCS5A02G438800可能参与叶绿体发育,另外7个候选基因的功能未知。  相似文献   
14.
磷酸核糖激酶(PRK)是卡尔文循环的关键酶,在调节糖代谢过程中起着关键作用。为探索TaPRK在小麦抗逆过程中的功能,以强抗寒冬小麦品种东农冬麦1号(Dn1)和弱抗寒冬小麦品种济麦22(J22)为材料,对TaPRK进行生物信息学分析和表达模式研究。结果表明,TaPRK基因含有一个1 215bp开放阅读框,编码404个氨基酸,表达产物为稳定的亲水蛋白,属于尿苷激酶家族,带有叶绿体转运肽,定位于叶绿体。越冬期间,Dn1分蘖节中TaPRK的相对表达量显著高于J22,Dn1叶片中TaPRK的相对表达量在-10℃和-25℃时高于J22,而在0℃时低于J22;外源ABA、SA和MeJA处理下,Dn1分蘖节中TaPRK的相对表达量均随着温度的降低表现为先升后降的趋势,且均在-10℃时达到表达量的峰值;外源ABA和SA处理下Dn1叶片中TaPRK的相对表达量呈现"降-升-降"的变化规律,在-10℃时显著高于对照;外源MeJA处理下,Dn1叶片中TaPRK的相对表达量在0℃和-25℃高于对照,且在0℃达到峰值。总体来说,TaPRK在小麦抗寒方面发挥正向调节作用。外源ABA、SA和MeJA增加了冬小麦TaPRK的表达量,有助于提高冬小麦的抗寒性。  相似文献   
15.
DEAD-box RNA解旋酶是RNA代谢途径中的关键酶,在RNA代谢过程中调控植株的生长发育和抗逆性。目前,尚未见有人对小麦DEAD-box基因家族进行系统鉴定与分析。为探究小麦DEAD-box基因的功能,本研究以水稻DEAD-box基因家族基因为参照,从小麦全基因组数据库中共鉴定到134个小麦DEAD-box家族基因,并利用生物信息学对其家族成员的理化性质、基因结构、进化树和共线性进行分析。结果表明,小麦DEAD-box蛋白多数为弱碱性蛋白,亚细胞定位分布广泛,核分布最多;小麦与水稻DEAD-box家族基因亲缘性较高,小麦DEAD-box蛋白结构域与核心基序排列有序稳定,高度保守;小麦DEAD-box家族基因在进化过程中可能发生了节段性复制事件,水稻与小麦DEAD-box基因无序共线性连线,说明DEAD-box基因在进化过程中可能存在染色体异位突变。进一步以强抗寒冬小麦品种东农冬麦1号(Dn1)和东农冬麦2号(Dn2)为材料,对其转录组库中低温差异表达的7个DEAD-box基因进行qRT-PCR分析,结果表明,这7个基因在不同品种和不同组织中表达量均有差异。Dn1中DEAD-box基因的表达量在 -10 ℃达到峰值,而Dn2中DEAD-box基因的表达量在-25 ℃达到峰值。  相似文献   
16.
外源ABA对冬小麦越冬期呼吸代谢关键酶与糖代谢的影响   总被引:1,自引:0,他引:1  
为探讨外源ABA对低温胁迫下冬小麦幼苗呼吸代谢的影响,以抗寒品种东农冬麦1号和冷敏感品种济麦22为材料,测定和分析了小麦三叶期叶面喷施ABA(浓度10-5 mol·L-1,剂量为每4 m2喷施1 L)后越冬期叶片和分蘖节在低温胁迫下碳水化合物含量、糖酵解代谢酶及三羧酸循环代谢酶活性的变化.结果表明,越冬期间随温度的降低,两个小麦品种的叶片和分蘖节中可溶性总糖和淀粉含量先升后降;参与糖酵解代谢的丙酮酸激酶、己糖激酶、磷酸果糖激酶及三羧酸循环代谢酶的活性在对照叶片中均先升后降,但在分蘖节中的变化则不尽相同.外源ABA处理使低温下两个小麦品种叶片和分蘖节积累更多的可溶性糖和淀粉,并且不同程度地提高了两个品种叶片及分蘖节中丙酮酸激酶、己糖激酶及磷酸果糖激酶的活性,尤其在最低温-25℃时明显抑制这几种酶活性的降低,这种影响在抗寒性强的东农冬麦1号中更明显;在低温胁迫后期抑制了三羧酸循环代谢酶和丙酮酸脱氢酶活性的降低,使其保持在相对较高的水平.外源ABA对碳水化合物积累的促进作用有利于植株呼吸和ATP合成维持在较高水平,进而提高低温下植株存活能力.  相似文献   
17.
刘丽杰  苍晶  王军虹  于晶 《麦类作物学报》2015,35(10):1333-1340
为了探讨外源ABA对苗期低温下冬小麦植株蔗糖代谢的调节作用,以抗寒性强的品种东农冬麦1号和抗寒性弱的品种济麦22为试验材料,在三叶期分别于不同温度下经ABA处理48 h后取叶片和地下茎,研究外源ABA对苗期低温下冬小麦的蔗糖含量及蔗糖代谢相关酶基因表达的影响。结果表明,外源ABA处理使低温下抗寒性强的东农冬麦1号中积累了更多的蔗糖,尤其是叶片,而在济麦22中则抑制了蔗糖的积累。4℃以上温度时,外源ABA促进了东农冬麦1号叶片和地下茎中UGP在蔗糖合成中的作用;在4℃以下低温时,外源ABA则促进了UGP在蔗糖分解中的作用。4℃以上温度时,外源ABA提高了东农冬麦1号叶片中Ta SPS基因和地下茎中Ta SAInv基因的表达,而抑制了济麦22各器官中Ta SPS基因和Ta SAInv基因的表达。此外,4℃以上温度时,外源ABA抑制了两个小麦品种各器官中Ta SS基因的表达。表明抗寒性强的东农冬麦1号对外源ABA可能更加敏感,其蔗糖合成能力的提高将有利于冬小麦植株抵御低温,进而维持植株的存活。  相似文献   
18.
Three DNA molecular marker systems, RAPD, ISSR and SSR, were used to test seed genetic purity of two commercial hybrid tomato (Lycopersicon esculentum L.) cultivars ‘Hezuo 903’ and ‘Sufen No. 8’. Genomic DNA from the two F1 hybrid cultivars and their corresponding parental lines was screened with 218 RAPD decamer primers, 54 ISSR primers and 49 SSR primers. Among the 321 primers, 4 primers for ‘Hezuo 903’ and 3 for ‘Sufen No. 8’, which could produce both female and male parent-specific markers, were selected for testing the genetic purity. A total of 210 hybrid individuals of each cultivar were analyzed using the identified primers. The combined results of the marker analysis showed that eight of the 210 F1 plants in ‘Hezuo 903’ and 13 of 210 in ‘Sufen No. 8’ were false hybrids, and the overall genetic purity of the two F1 hybrid seed lots was 96.2 and 93.8%, respectively. This study showed that RAPD and SSR markers could provide a practical and efficient tool in quality control of the tomato commercial hybrid seeds.  相似文献   
19.
为检测胰岛素样生长因子(IGFs)及其受体(IGFR)mRNAs在绵羊发情周期早期卵巢、子宫和输卵管中的表达,探讨绵羊胚胎早期发育过程中其发育环境——生殖道中生长因子的表达、分泌及其作用,取绵羊发情周期早期卵巢、子宫和输卵管,经固定、切片、免疫染色,观察IGFs mRNAs的表达和分布情况。同时用RT-PCR技术研究了各组织中IGF-Ⅰ、IGF-Ⅱ、IGF-ⅠR、IGF-ⅡR mRNAs的表达情况。结果表明,IGFs mRNAs在绵羊发情周期早期的卵巢、子宫和输卵管中都有表达,4种因子表达模式相似:在卵巢中,IGFs主要定位于卵泡颗粒细胞,间质细胞亦有少量表达。在输卵管中,上皮细胞免疫染色呈阳性;在子宫中,腺细胞及上皮细胞的阳性信号强于固有层。RT-PCR检测表明IGFs mRNAs在3种组织中均有表达。  相似文献   
20.
诠释了东北林区道路规划布局的新理念。即采用系统工程的理论,东北林区规划看作一个系统,东北林区道路规划以若干个子系统之一的形式出现,研究探讨东北林区道路规划子系统与其它子系统的相关关系,以及由此影响系统目标优化的种种制约因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号