首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1640篇
  免费   90篇
  国内免费   1篇
林业   228篇
农学   52篇
基础科学   11篇
  425篇
综合类   182篇
农作物   59篇
水产渔业   70篇
畜牧兽医   489篇
园艺   47篇
植物保护   168篇
  2023年   15篇
  2022年   19篇
  2021年   33篇
  2020年   39篇
  2019年   35篇
  2018年   53篇
  2017年   67篇
  2016年   46篇
  2015年   38篇
  2014年   51篇
  2013年   75篇
  2012年   112篇
  2011年   131篇
  2010年   76篇
  2009年   79篇
  2008年   112篇
  2007年   109篇
  2006年   79篇
  2005年   84篇
  2004年   72篇
  2003年   71篇
  2002年   71篇
  2001年   26篇
  2000年   14篇
  1999年   18篇
  1998年   13篇
  1997年   10篇
  1996年   10篇
  1995年   15篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1981年   5篇
  1979年   7篇
  1976年   7篇
  1975年   3篇
  1974年   5篇
  1973年   7篇
  1972年   4篇
  1970年   7篇
  1963年   3篇
  1962年   3篇
排序方式: 共有1731条查询结果,搜索用时 421 毫秒
51.
Trees have been increasingly considered as modular organisms, with individual shoots forming autonomous units that respond semi-independently to their surrounding environment. However, there is evidence for fairly strict hormonal control of tree crown development. Studies on the hydraulic architecture of trees suggest a closer functional connection between shoots and crown development than is postulated by the theory of branch autonomy. We studied how shoot growth pattern influences growth and crown architecture in young Scots pine trees simulated by the LIGNUM model assuming that (a) the growth of a shoot mainly depends on its light climate and (b) the growth of a shoot is influenced by its position within the crown. We determined shoot position within the crown based on a recently developed vigor index. The vigor index compares the relative axis cross-sectional area from the base of the tree to each shoot and gives a value of 1 to the pathway of the greatest cross-sectional area. All other shoots attain values between 0 and 1 depending on their cross-sectional areas and the cross-sectional areas of the branches leading there from the main axis. The shoot light climate is characterized by annually intercepted photosynthetically active radiation. We compared the results from simulations (a) and (b) against an independent data set. The addition of a within-shoot position index (the vigor index) to our simulation (simulation b) resulted in a more realistic tree form than that obtained with simulation (a) alone. We discuss the functional significance of the results as well as the possibilities of using an index of shoot position in simulations of crown architecture.  相似文献   
52.
A combination of bulk and surface modification of wood could lead to a product that shows the advantages of both treatments. This study evaluates the penetration of melamine resin into acetylated and silylated cell walls and possible side effects of melamine impregnation on this bulk treatment in order to clarify the feasibility of a combination of the chosen bulk modification (acetylation or silylation) and surface treatments (hardening by melamine modification). UV microscopy confirmed that melamine resin penetrates into wood cell walls even after acetylation and silylation treatment. Energy dispersive X-ray analysis showed that the melamine treatment did not lead to substantial washing out of silyl groups with the silylation reagent used. The possibility of a combination of the selected bulk and surface modification methods is given.  相似文献   
53.
LIGNUM is a whole tree model, developed for Pinus sylvestris in Finland, that combines tree metabolism with a realistic spatial distribution of morphological parts. We hypothesize that its general concepts, which include the pipe model, functional balance, yearly carbon budget, and a set of architectural growth rules, are applicable to all trees. Adaptation of the model to Pinus banksiana, a widespread species of economic importance in North America, is demonstrated.

Conversion of the model to Jack pine entailed finding new values for 16 physiological and morphological parameters, and three growth functions. Calibration of the LIGNUM Jack pine model for open grown trees up to 15 years of age was achieved by matching crown appearance and structural parameters (height, foliage biomass, aboveground biomass) with those of real trees. A sensitivity study indicated that uncertainty in the photosynthesis and respiration parameters will primarily cause changes to the net annual carbon gain, which can be corrected through calibration of the growth rate. The effect of a decrease in light level on height, biomass, total tree branch length, and productivity were simulated and compared with field data. Additional studies yielded insight into branch pruning, carbon allocation patterns, crown structure, and carbon stress. We discuss the value of the LIGNUM model as a tool for understanding tree growth and survival dynamics in natural and managed forests.  相似文献   

54.
ABSTRACT

An IML-RESI PD 400 drilling tool and a standard spade drill bit (IML System GmbH, Wiesloch, Germany) were used to study the combined effect of wood moisture content (MC), drill bit rotational speed and feed rate on drilling resistance (DR) and feeding force (FF). Tests were made with Norway spruce (Picea abies (L.) Karst.) conditioned in a normal climate (20°C/65% RH), at 20°C/95% RH, vacuum-pressure impregnated in water, and oven-dried. Rotational speeds and feed rates had an impact on feed rate per cutting edge for the major cutting edge of the drill bit which was used for correlation with DR and FF for various MC. Impact of MC on DR and FF depended on rotational speeds and feed rates of the drill bit. For feed rates per cutting edge less than 0.09?mm, DR was higher for water saturated (WS) specimens. Negligible differences between DR for various MC were found for feed rates per cutting edge between 0.09 and 0.15?mm. DR was higher at low MC for feed rates per cutting edge which were higher than 0.15?mm. FF extremely increased in conditioned (20°C/95% RH) and WS specimens at feed rates per cutting edge less than 0.1?mm.  相似文献   
55.
Seasonal fluxes of CO2 from soil and the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) were estimated for a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) in Central Europe. Mature trees of each species were girdled in August 2002 to eliminate carbohydrate allocation to roots. SR was measured at distances of 0.5, 1.0, and 1.5/2.0 m from the bole of each tree at 1–2 weeks intervals throughout the fall of 2002 and monthly during the spring and summer of 2003. The contribution of roots and mycorrhizae to total SR was estimated by the decrease in SR compared to ungirdled control trees to account for seasonal patterns evident in controls. SR decreased with soil temperature in the fall 2002 and increased again in 2003 as soil warmed. During most of the study period, SR was strongly related to soil temperature. During the dry summer of 2003, however, SR appeared to be uncoupled from temperature and was strongly related to soil water content (SWC). Mean rates of SR in beech and spruce control plots as well as root densities did not show a clear pattern with distance from the bole. SR decreased to levels below controls in beech within a few days after girdling, whereas spruce did not show a significant decrease until October 2002, 6 weeks after girdling. In both beech and spruce, decreased SR in response to girdling was greatest closest to the bole, possibly reflecting increased mycorrhizal activity close to the bole. Autotrophic respiration was estimated in beech to be as much as 50% of the total SR in the stand. The contribution of autotrophic respiration was less certain for spruce, although close to the bole, the autotrophic fraction may contribute to total SR as much as in beech. The large fraction of autotrophic respiration in total SR requires better understanding of tree level stresses that affect carbon allocation below ground.  相似文献   
56.
Shoot architecture may significantly alter mean quantum flux on foliage and thus, photosynthetic productivity. There is currently only limited information about plastic alterations in shoot structure caused by within-canopy variation in mean integrated irradiance (Q(int)) in broad-leaved trees. We studied leaf and shoot structure, and nitrogen and carbon content in late-successional, widely distributed, temperate, broad-leaved Nothofagus taxa to determine the architectural controls on light harvesting and photosynthetic performance. Nothofagus fusca (Hook. f.) Oersted has larger leaves and less densely leaved shoots than the N. solandri varieties. Nothofagus solandri var. solandri (Hook. f.) Oersted is characterized by rounder leaves that potentially have a larger overlap than the ovate-triangular leaves of N. solandri var. cliffortioides (Hook. f.) Poole. Leaf dry mass (M(A)) and nitrogen content (N(A)) per unit area increased with increasing Q(int) in all species, demonstrating enhanced investment of photosynthetic biomass in high light. Although M(A) differed between species at a common irradiance, there was a uniform relationship between N(A) and Q(int) across species. Leaf carbon content per dry mass and leaf dry mass to fresh mass ratio also scaled positively with irradiance, suggesting greater structural investments in high light. In all species, shoots became more horizontal and flatter at lower Q(int), implying an enhanced use efficiency of direct irradiance in natural leaf positions. In contrast, irradiance effects on leaf aggregation varied among species. Across the data, leaf overlap or leaf area density was often greater at lower irradiances, possibly as a result of limited carbon availability for shoot axis extension growth. In N. fusca, leaves of which were more aggregated in high light, the shoot silhouette to total leaf area ratio (S(S)) declined strongly with increasing irradiance, demonstrating a lower light harvesting efficiency at high Q(int). This effect was only moderate in N. solandri var. cliffortioides and S(S) was independent of Q(int) in N. solandri var. solandri. Although the efficiency of light interception at high irradiances was lowest in N. fusca, this species had the greatest nitrogen content per unit shoot silhouette area (2N(A)/S(S)), indicating superior shoot-level photosynthetic potential. These data collectively demonstrate that shoot architecture significantly affects light interception and photosynthesis in broad-leaved trees, and that structural carbon limitations may constrain leaf light harvesting efficiency at low irradiance.  相似文献   
57.
We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.  相似文献   
58.
59.
The effects of weaning on beef calves of different ages were investigated. Forty male and 40 female calves were either weaned at 6 (W6, n = 40) or 8 (W8, n = 40) months of age. The vocalization activity and behaviors (feeding, lying and standing/walking) were observed during the first 3 days following weaning. Body weight was recorded at 6 and 8 months and 2 weeks following weaning. W6 animals vocalized more often than W8 calves and females more than males on day 1 (P < 0.05). The vocalization activity decreased at a higher rate in W8 than in W6 from days 1 to 3. On day 2, W6 calves spent less time lying and more standing/walking than W8 calves (P < 0.05). The behaviors did not differ between males and females. The average daily gain after weaning did not differ between weaning ages (P > 0.05), but W8 calves gained more from 6 to 8 months of age. In conclusion, weaning distress was more pronounced in W6 than in W8 calves. W8 calves also had a superior growth performance during 6 to 8 months of age. The effect of the calves' sex was less pronounced. Therefore, it is recommended to wean beef calves later than 6 months of age.  相似文献   
60.
Nematicides are widely used to control plant-parasitic nematodes in intensive export banana (Musa spp.) cropping systems. Data show that the concentration of fosthiazate in banana fruits varies from zero to 0.035 g kg-1, under the maximal residue limit (MRL=0.05 mg kg-1). The fosthiazate concentration in fruit is described by a Gaussian envelope curve function of the interval between pesticide application and fruit harvest (preharvest interval). The heterogeneity of phenological stages in a banana population increases over time, and thus the preharvest interval of fruits harvested after a pesticide application varies over time. A phenological model was used to simulate the long-term harvest dynamics of banana at field scale. Simulations show that the mean fosthiazate concentration in fruits varies according to nematicide application program, climate (temperature), and planting date of the banana field. This method is used to assess the percentage of harvested bunches that exceed a residue threshold and to help farmers minimize fosthiazate residues in bananas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号