首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   32篇
林业   28篇
农学   24篇
基础科学   5篇
  148篇
综合类   44篇
农作物   21篇
水产渔业   46篇
畜牧兽医   195篇
园艺   15篇
植物保护   46篇
  2023年   8篇
  2021年   12篇
  2020年   14篇
  2019年   17篇
  2018年   17篇
  2017年   13篇
  2016年   12篇
  2015年   14篇
  2014年   26篇
  2013年   21篇
  2012年   40篇
  2011年   38篇
  2010年   25篇
  2009年   27篇
  2008年   39篇
  2007年   35篇
  2006年   22篇
  2005年   35篇
  2004年   38篇
  2003年   38篇
  2002年   27篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有572条查询结果,搜索用时 156 毫秒
71.
This study aims to elucidate the significance of compost and soil characteristics for the biological activity of compost‐amended soils. Two agricultural soils (Ap horizon, loamy arable Orthic Luvisol and Ah horizon, sandy meadow Dystric Cambisol) and a humus‐free sandy mineral substrate were amended with two biowaste composts of different maturity in a controlled microcosm system for 18 months at 5 °C and 14 °C, respectively. Compost application increased the organic matter mineralization, the Cmic : Corg ratio, and the metabolic quotients significantly in all treatments. The total amount of Corg mineralized ranged from < 1 % (control plots) to 20 % (compost amended Dystric Cambisol). Incubation at 14 °C resulted in 2.7‐ to 4‐fold higher cumulative Corg mineralization compared to 5 °C. The Cmic : Corg ratios of the compost‐amended plots declined rapidly during the first 6 months and reached a similar range as the control plots at the end of the experiment. This effect may identify the compost‐derived microbial biomass as an easily degradable C source. Decreasing mineralization rates and metabolic quotients indicated a shift from a compost‐derived to a soil‐adapted microbial community. The Corg mineralization of the compost amended soils was mainly regulated by the compost maturity and the soil texture (higher activity in the sandy textured soils). The pattern of biological activity in the compost‐amended mineral substrate did not differ markedly from that of the compost‐amended agricultural soils, showing that the turnover of compost‐derived organic matter dominated the overall decay process in each soil. However, a priming effect occurring for the Dystric Cambisol indicated, that the effect of compost application may be soil specific.  相似文献   
72.
The inhibitory action on photosystem II of four sorgoleone analogues, isolated from Sorghum bicolor (L) Moench, and two synthetic inhibitors, diuron and bentazone, was tested by measuring oxygen evolution of thylakoid membranes. The inhibition of oxygen evolution for mixtures of inhibitors was compared with the Additive Dose Model (ADM). ADM assumes that, at a defined response level, the effect of a mixture of inhibitors can be unambiguously expressed by the potency of either of the inhibitors applied separately. The slope of the logistic dose-response curves differed between the inhibitors; sorgoleone analogues had the steepest and bentazone the shallowest slope. The difference in slopes makes the interpretation of the isoboles less general and may reflect the differences in the interaction between the natural and the synthetic inhibitors with the binding site. The results suggest that there may be some limitation to ADM, namely that compounds with the same site of action might have different response curves if their mechanism of binding is different. The joint action of inhibitors follows ADM at I50 . Therefore, the inhibitors can replace each other in any mixture ratio, based on the relative potencies of the pure inhibitors, without changing each other's effect on oxygen evolution. The joint action at I20 and I80 sometimes diverged from ADM. © 1999 Society of Chemical Industry  相似文献   
73.
It has been suggested that liming can improve soil structure and thereby decrease losses of particles and associated nutrients. In this study, two types of structure lime, slaked lime (Ca(OH)2) and a mixed product of calcium carbonate (CaCO3) and slaked lime (Ca(OH)2), were applied at three different rates in field trials on clayey soils (23%–40% clay). A combination of primary tillage and structure liming was also studied, in a split-plot trial on a clayey soil (25% clay). Aggregate (2–5?mm) stability, measured as reduction in turbidity (which is strongly correlated with losses of particulate phosphorus), was significantly increased with the highest application rates of both structure lime products. Aggregate size distribution was also improved with structure lime, creating a finer tilth in the seedbed. Yield response to structure lime was not consistent, with both negative and positive responses over the four-year study period. Positive yield responses can possibly be attributed to the finer tilth preventing evaporation in two dry growing seasons. Negative yield responses were probably an effect of impaired phosphorus availability associated with limited precipitation in May-July in 2011 and 2013. Two years after liming, soil pH levels were significantly elevated in plots with the highest application rate of structure lime, whereas no significant increases were found three years after liming. However, a lingering effect of liming was still detectable, as manganese concentration in barley grain was significantly lower in plots with the highest application rates of both structure lime products in the fourth study year. These results indicate that structure liming can be used as a measure to mitigate phosphorus losses from clayey soils, thereby preventing eutrophication of nearby waters. However, the yield response was varying and unpredictable and thus further investigations are needed to determine the circumstances in which field liming can act efficiently not only to prevent phosphorus losses, but also to ensure consistent yield increases.  相似文献   
74.
75.
Various process-based models are extensively being used to analyze and forecast catchment hydrology and water quality. However, it is always important to select the appropriate hydrological and water quality modeling tools to predict and analyze the watershed and also consider their strengths and weaknesses. Different factors such as data availability, hydrological, hydraulic, and water quality processes and their desired level of complexity are crucial for selecting a plausible modeling tool. This review is focused on suitable model selection with a focus on desired hydrological, hydraulic and water quality processes (nitrogen fate and transport in surface, subsurface and groundwater bodies) by keeping in view the typical lowland catchments with intensive agricultural land use, higher groundwater tables, and decreased retention times due to the provision of artificial drainage. In this study, four different physically based, partially and fully distributed integrated water modeling tools, SWAT (soil and water assessment tool), SWIM (soil and water integrated model), HSPF (hydrological simulation program– FORTRAN) and a combination of tools from DHI (MIKE SHE coupled with MIKE 11 and ECO Lab), have been reviewed particularly for the Tollense River catchment located in North-eastern Germany. DHI combined tools and SWAT were more suitable for simulating the desired hydrological processes, but in the case of river hydraulics and water quality, the DHI family of tools has an edge due to their integrated coupling between MIKE SHE, MIKE 11 and ECO Lab. In case of SWAT, it needs to be coupled with another tool to model the hydraulics in the Tollense River as SWAT does not include backwater effects and provision of control structures. However, both SWAT and DHI tools are more data demanding in comparison to SWIM and HSPF. For studying nitrogen fate and transport in unsaturated, saturated, and river zone, HSPF was a better model to simulate the desired nitrogen transformation and transport processes. However, for nitrogen dynamics and transformations in shallow streams, ECO Lab had an edge due its flexibility for inclusion of user-desired water quality parameters and processes. In the case of SWIM, most of the input data and governing equations are similar to SWAT but it does not include water bodies (ponds and lakes), wetlands and drainage systems. In this review, only the processes that were needed to simulate the Tollense River catchment were considered, however the resulted model selection criteria can be generalized to other lowland catchments in Australia, North-western Europe and North America with similar complexity.  相似文献   
76.
77.
Common voles (Microtus arvalis) are common small mammals in some European landscapes. They can be a major rodent pest in European agriculture and they are also a representative generic focal small herbivorous mammal species used in risk assessment for plant protection products. In this paper, common vole population dynamics, habitat and food preferences, pest potential and use of the common vole as a model small wild mammal species in the risk assessment process are reviewed. Common voles are a component of agroecosystems in many parts of Europe, inhabiting agricultural areas (secondary habitats) when the carrying capacity of primary grassland habitats is exceeded. Colonisation of secondary habitats occurs during multiannual outbreaks, when population sizes can exceed 1000 individuals ha?1. In such cases, in‐crop common vole population control management has been practised to avoid significant crop damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors or the use of alternativee focal rodent species in particular European regions. Some of these adjustments are already being applied in some EU member states. Therefore, it seems reasonable consistently to apply such pragmatic and realistic approaches in risk assessments for plant protection products across the EU. © 2013 Society of Chemical Industry  相似文献   
78.
Urban and peri-urban agriculture (UPA) significantly contributes to food and nutritional security of urban dwellers in many African countries. Economic and demographic pressures often lead to transformation of subsistence-oriented traditional homegardens into commercial production units. Such transformation is claimed to result in decreasing plant diversity, particularly of local species. A study was therefore undertaken in 51 gardens of Niamey, Niger, to assess the factors determining plant diversity and the suitability of UPA for in situ conservation of plant genetic resources. In each garden, the number and abundance of all human-used plant species were determined, and species density, Shannon index and Shannon evenness were calculated. In the 51 surveyed gardens, a total of 116 plant species were cultivated, most of them for the production of fruits or vegetables. Annual vegetables dominated, particularly exotic species grown for sale. In the cold season, an average of 14 species were cultivated per garden, the Shannon index was 0.96 and evenness was 0.39. Commercial gardens had a species richness similar to that of subsistence gardens, but a lower evenness (P < 0.005), caused by the dominance of a few vegetable species. Gardens of immigrants had a lower Shannon index than those of members of the local Djerma ethnic group. Stepwise multiple regression analysis showed significant influence of various variables on plant species richness and diversity parameters: garden size (richness and Shannon index), ethnicity of the gardener (richness and evenness), gender of the gardener and cash-oriented production (evenness), household size (richness) and garden possession status (Shannon index). Cluster analysis revealed the existence of five garden types. The highest species richness and diversity, particularly of perennial and local species, was found in large, peri-urban, commercial gardens managed by relatively wealthy, elderly gardeners with large families and a regular non-agricultural income.  相似文献   
79.
The effect of different polishing techniques on loss of mineral elements from rice grains was quantified using a panel of indica and tropical japonica genotypes, previously classified as differing in ease of polishing. Gradients in mineral elements across the bran-endosperm interface were quantified using micro-scaled precision abrasive polishing in combination with inductively coupled plasma mass spectrometry and synchrotron X-ray fluorescence microscopy. Frictional polishing, similar to that of commercial mills, i.e. 8–10% loss of grain weight, reduced the concentration of Fe, Mg, P, K and Mn by 60–80% in all genotypes. Following gentler polishing (3–5% weight loss), genotypes classified as difficult to polish showed smaller decreases in Fe, Mg, P, K and Mn compared to genotypes classified as easy to polish. The concentration of other elements, e.g. Zn, S, Ca, Cu, Mo and Cd, showed comparable reductions (<30%) irrespective of polishing technique or ease of polishing. The different patterns of polishing losses of minerals reflected their distribution within the grain. Five-fold differences in the reduction of Zn concentration during polishing were observed for different genotypes which started with similar Zn concentrations in the unpolished grain, thus showing clear potential for selecting genotypes with reduced polishing losses of Zn.  相似文献   
80.
The functional properties of wheat are largely dictated by composition and interactions of the gluten proteins. All flours contain gliadin and glutenin, but produce baked products of varying quality, which provides evidence that gluten proteins from different wheats possess different properties. A common method to study differences in gluten properties, which is utilized in this study, is fractionation/reconstitution experiments to understand how various gliadin to glutenin ratios and how fractions from different wheat sources affect gluten aggregation properties. Gliadin and glutenin from a vital wheat gluten were fractionated with 70% ethanol and reconstituted at various gliadin to glutenin ratios. Gliadin and glutenin from a Canadian eastern soft, eastern hard and western hard wheat (14% moisture) were fractionated and substituted between flours at the native gliadin to glutenin ratio. Gluten combinations were evaluated with a Gluten Peak Tester at constant temperature and mixing. Varying gliadin to glutenin ratio showed that 50:50 is optimal for fast gluten aggregation while amount of glutenin dictates strength. Substitution experiments showed that replacing good quality gluten fractions with those from a lower quality wheat decreases gluten quality, and vice versa. Data also showed that cultivar specific differences in gliadin and glutenin are more important in dictating gluten strength (torque), while gliadin to glutenin ratio dictates aggregation time (PMT) independent of the source of fractions. The study demonstrated the ability of the improved method to evaluate gluten aggregation by controlling for all variables except the one being tested. The data also revealed information about gluten aggregation properties never before seen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号