首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  国内免费   48篇
基础科学   44篇
  46篇
综合类   7篇
植物保护   2篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1985年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
31.
干旱区滴灌均匀系数对土壤水氮分布影响模拟   总被引:1,自引:0,他引:1  
基于HYDRUS-2D软件建立了棉花膜下滴灌水氮运移模型,利用干旱区棉花膜下滴灌试验数据对模型进行了参数率定和验证。将灌水器流量沿毛管的变化离散为依次逐段减小,并假设土壤水分在各段之间不存在交换,利用验证后的数学模型研究了干旱区不同滴灌均匀系数时土壤水氮分布特征,评估了土壤空间变异对水氮分布均匀性的影响。模拟结果表明,随着灌水的进行,滴灌均匀系数Cu为0.60和0.80时,土壤含水率和NO-3-N质量浓度均匀系数均呈下降趋势,而Cu=0.95时变化较平稳;滴灌均匀系数越低,灌水后土壤含水率和NO-3-N质量浓度均匀系数降低的幅度越大;土壤NO-3-N质量浓度均匀系数的变化范围为0.35~1.00,低于土壤含水率均匀系数。田间试验存在的土壤空间变异在一定程度上增加了土壤水氮分布不均匀性。  相似文献   
32.
干旱区棉花水分胁迫指数对滴灌均匀系数和灌水量的响应   总被引:1,自引:0,他引:1  
为了修订和完善滴灌均匀系数的设计与评价标准,在新疆干旱区研究了滴灌均匀系数和灌水量对作物水分胁迫指数(CWSI)的影响。供试作物为棉花,试验中滴灌均匀系数(Cu)设置0.65(C1)、0.78(C2)和0.94(C3)三个水平,灌水量设置充分灌水量的50%、75%和100%三个水平。结果表明:棉花冠层温度和CWSI表现出随灌水量增加而降低的趋势;冠层温度和CWSI均匀系数的变化范围分别为0.91~0.98和0.65~0.91,均随滴灌均匀系数增加而增大;灌水量对冠层温度和CWSI均值的影响达到极显著水平(α=0.01),滴灌均匀系数对冠层温度和CWSI均匀系数的影响达到显著水平(α=0.05)或极显著水平。CWSI与皮棉产量呈显著或极显著的负相关关系;滴灌均匀系数越低,水分亏缺引起的减产幅度越小。  相似文献   
33.
喷洒水滴直径测试方法的研究   总被引:1,自引:0,他引:1  
对测试喷洒水滴直径的滤纸法、面粉法、激光法的测试技术作了阐述;以这三种方法的实测结果为依据,对其测试精度和产生误差的原因进行了分析,并对测试结果进行了统计检验。结果表明,三种方法的测试结果之间无显著差异。在对三种测试水滴直径方法的测试精度和所需仪器设备的造价进行综合评价的基础上,提出我国现阶段以采用面粉法测试水滴直径为宜。  相似文献   
34.
本文通过对异形喷嘴水滴分布实测资料的分析,找出了影响方形及双长方形喷嘴喷洒水舌末端水滴直径的主要因素,对比了异形喷嘴与圆形喷嘴的雾化状况,并在此基础上提出了异形喷嘴适宜雾化指标H/(de)值。  相似文献   
35.
地面灌溉技术参数对氮素运移分布影响的研究进展   总被引:5,自引:2,他引:5  
地面灌溉是应用最广泛的灌水方法,通过优化地面灌溉设计和管理减少水氮淋失,正在成为研究的热点问题,该文对有关成果进行了综述。由于地面灌溉的尺度较大,加之土壤水力参数和溶质运移参数的空间变异,使得地面灌溉施肥条件下溶质(N)运移分布的田间试验研究,无论在技术上还是在投入上都具有一定难度。有关沟灌、畦灌和水平畦田灌溉施肥时水氮分布的田间试验结果指出,肥料(N)分布没有入渗水深分布均匀,且与土壤初始含水率、流量、土壤入渗参数、田面糙率和施肥时机等因素密切相关。在模拟研究方面,文献中报道的模型有纯对流模型、对流-弥散模型、基于活塞流的水平衡模型和传递函数模型等。鉴于地面灌溉条件下水氮运移的复杂性,在水氮运移分布的数学模拟、灌水技术参数和施肥方式对水氮淋失的影响以及灌溉施肥质量评价指标体系等方面尚需要进一步研究。  相似文献   
36.
滴灌施肥时水肥顺序对番茄根系分布和产量的影响   总被引:5,自引:5,他引:5  
利用田间试验,在日光温室内研究了滴灌施肥灌溉系统运行方式和施氮量对番茄根系分布和产量的影响。取先施氮和先灌水两种运行方式;施氮量取372 kg/hm2和204 kg/hm2两个水平。收获后取根样,用WinRHIZO软件对各处理的整根特征参数和根密度垂直分布进行分析。结果表明,随着施氮量的增加整根的根长、根表面积、根体积和根干重均显著增加,各层土壤的根密度也随之增加。施氮量一定时,先施氮处理中整根的根长大于先灌水处理,而根表面积、根体积和平均直径都小于先灌水处理。在垂直剖面上,先灌水处理使上层土壤的根密度增加,而先施氮处理使下层土壤的根密度增加。运行方式对根长和各土层根长密度的影响主要体现在直径小于1 mm的根系上,这部分根系占整个根系的比例和产量之间有很好的相关关系。各处理间产量的差异未达显著性水平。  相似文献   
37.
东北半湿润区膜下滴灌对农田水热和玉米产量的影响   总被引:14,自引:0,他引:14  
为从农田土壤水、热循环角度揭示玉米膜下滴灌节水增产机理,于2011—2013年在东北半湿润区开展了玉米田间试验,对膜下滴灌、不覆膜滴灌和地面灌玉米田进行了土壤温度、含水率、田间小气候、作物生长、养分积累及产量的观测和分析。结果表明:与不覆膜滴灌和地面灌相比,膜下滴灌提高了玉米生育前期的土壤温度,苗期5~25 cm的日均土壤温度增加2.3℃,土壤积温增加87℃;整个生育期土壤积温增加115~150℃。覆膜减少了土壤蒸发,膜下滴灌玉米生育期的土壤蒸发量比不覆膜滴灌降低53%,提高了玉米生育前期的土壤含水率。膜下滴灌提高了典型日的冠层空气温度并降低了冠层空气湿度,可能导致作物蒸腾量的增加。膜下滴灌明显增加了玉米生育前期的氮素吸收量,促进了玉米的营养生长,为生育后期的生殖生长积累了更多的营养物质,成熟期的地上部分干物质质量分别比不覆膜滴灌和地面灌增加14%和23%,氮素吸收量分别增加16%和28%。膜下滴灌营造了有利于玉米生长的土壤水、热环境,平均产量分别比不覆膜滴灌和地面灌处理提高11%和21%,水分利用效率分别提高9%和18%。  相似文献   
38.
考虑喷灌田间小气候变化作用确定灌水技术参数方法探讨   总被引:1,自引:0,他引:1  
喷灌强度和灌溉时间是喷灌系统重要的设计与运行参数。传统的喷灌技术参数确定方法没有系统考虑喷灌对田间小气候变化的影响。以2001—2007年河南省新乡市和2005—2011年北京市大兴地区的夏玉米为研究对象,探讨了考虑喷灌田间小气候变化作用确定灌水技术参数的方法,即利用考虑了喷灌田间小气候变化效果的扩展CUPID模型,模拟不同喷灌强度和灌溉时间的喷灌水利用率,研究喷灌水利用率的年际和季节变化规律,以喷灌水利用率最高为目标确定喷灌技术参数。结果表明,随着夏玉米的生长,喷灌水利用率逐渐降低。不同地区喷灌强度对喷灌水利用率年际变化表现出不同的影响程度;白天灌溉比夜间灌溉的喷灌水利用率具有更强的年际变化特征。新乡市粉砂壤土适宜的喷灌强度为10 mm·h-1,大兴地区砂质壤土适宜的喷灌强度为15 mm·h-1,灌溉宜选择在8:00开始。  相似文献   
39.
磷肥施入方式对土壤速效磷含量及玉米生长的影响   总被引:1,自引:0,他引:1  
2016年和2017年分别进行了玉米盆栽和大田试验.盆栽试验中,磷肥施入方式设置磷肥基施和磷肥分3次随水施入2种,滴灌带埋深设置0,15,30 cm 3个水平.大田试验中增加了地表滴灌不施磷肥处理作为对照.结果表明磷肥以随水施入方式分次施入土壤时,能提高土壤剖面中速效磷含量,土壤剖面中速效磷呈随距滴头距离增加而减小的趋势.磷肥随水施入措施可以有效促进作物生长及产量形成,对玉米产量的影响在α=0.1水平上达到显著.滴灌带埋深为15 cm时,作物生长及产量优于地表滴灌处理.当滴灌带埋深为30 cm时,在一定程度上降低了施入磷肥对作物生长的促进作用.建议采用地下滴灌磷肥随水施入方式,但也应该避免使用过深的滴灌带埋深.  相似文献   
40.
层状土壤质地对地下滴灌水氮分布的影响   总被引:12,自引:4,他引:8  
以均质砂土(S)、均质壤土(L)和上砂下壤层状土壤(SL)为对象,采用室内土箱试验,研究了土壤质地及其层状结构和地下滴灌灌水器流量对水分、硝态氮和铵态氮分布的影响。结果表明,SL层状土壤中,砂-壤界面增加了水分的横向扩散而限制了水分的垂向运动,致使界面下部形成水分和硝态氮积聚区。土壤硝态氮分布还受肥料溶液浓度和土壤初始硝态氮浓度影响,对试验采用的土壤初始硝态氮浓度较低而肥料溶液硝态氮浓度较高的情况而言,灌水器周围的硝态氮浓度与肥料溶液的硝态氮浓度相近,随着离开灌水器距离的增加,土壤硝态氮浓度减小。灌水器周围的土壤含水率和硝态氮浓度随灌水器流量的增大而增大。施肥灌溉使灌水器周围5~10 cm范围内的铵态氮浓度出现峰值,而土壤质地和灌水器流量对铵态氮浓度分布没有明显影响。因此地下滴灌水氮管理措施的制定应综合考虑土壤质地及其结构、初始土壤水氮状况、灌水器埋深及流量、灌水量、肥液浓度等因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号