首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   7篇
基础科学   1篇
  7篇
畜牧兽医   8篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
排序方式: 共有16条查询结果,搜索用时 140 毫秒
11.
饲料的糊化作为一种功能特性广泛存在于饲料的热加工中,水分、温度和时间是影响饲料糊化的重要工艺参数。为探究饲料在水热处理过程中的糊化动力学参数及饲料颗粒结构的内在变化,该研究基于均匀板加热法,将25%和30%水分的育肥猪配合饲料,分别在75、80、85、90和95℃温度下,进行0.5、1、3、5、7和10min加热时间的热处理,分析热处理后饲料样品的糊化程度、糊化动力学参数、结晶特性、双折射特性和微观形貌等理化性质。结果显示,水分是饲料糊化的第一限制性因素,25%和30%水分饲料的最大糊化度分别为0.320 6±0.016 2和0.668 8±0.015 0,饲料的糊化过程遵循非线性一级动力学模型,且在热处理时长达到3 min左右时,糊化度趋向糊化终端的渐进值;由Arrhenius公式回归得到的25%和30%水分饲料糊化活化能分别为11 356.58和52 705.59 J/mol,是限制水分条件下的"不完全糊化活化能"。具有不同双折射消失程度的颗粒共存于同一热处理样品体系中,淀粉颗粒双折射性的消失从颗粒中心开始,热处理样品微观结构的变化主要表现为颗粒中心无定形区的优先破坏,中心结构的破坏导致颗粒表面塌陷,并促进了存在于淀粉颗粒无定形区直链淀粉的浸出;经过热处理样品的结晶图谱由A型转变为V型;晶体结构的破坏和重组同时发生但程度不同,样品的相对结晶度表现为先降低,并在特征温度明显回升后再次下降。研究结果为饲料热加工中原料的相互作用及变化机制提供了基础数据,对饲料调质和膨化工艺的优化具有潜在的应用价值。  相似文献   
12.
梯度恒温水热处理饲料的糊化时间温度特性研究   总被引:2,自引:2,他引:0  
糊化作为淀粉热加工过程中的一种功能特性,在以淀粉源原料为主的饲料工业中应用广泛,而时间和温度是饲料调质等热加工中2个相互依存的重要工艺参数。为探究饲料糊化过程中对时间和温度的敏感性、掌握饲料糊化变性规律,该文以育肥猪配合饲料粉料为研究对象,基于饲料糊化的黏度特性,利用快速黏度分析仪(rapid visco analyzer,RVA)在25~95℃范围内测定了5、10、15℃/min3个升温速率对饲料糊化行为的影响,并在此基础上,采用自定义的RVA梯度恒温加热程序对饲料进行水热处理,分析饲料糊化的时间和温度依赖性,利用黏度差值Δμ及其导数分析得到饲料糊化的温度阈值。结果显示:饲料的糊化行为受升温速率影响(P0.05),当升温速率由5增加到15℃/min,峰值黏度由295增加到364 mPa·s,起始糊化温度由71.90增加到72.85℃;72、78和86℃3个温度阈值将饲料糊化过程中黏度的增长趋势划分为4个阶段;温度梯度范围为64~95℃、恒温保持时间分别为1、3、5和10min的梯度恒温加热程序,证实了饲料糊化的温度依赖性和时间依赖性,且在饲料糊化的不同阶段所表现出的温度和时间依赖性显著程度不同;过长的恒温或加热处理时间会降低饲料糊化过程中的黏度值,使饲料的糊化表现出剪切稀化现象;在育肥猪配合饲料调质工艺参数的设定中,调质温度选择高于起始糊化温度72℃为宜,且延时熟化保持能带来更好的调质效果。研究结果为饲料糊化过程的研究提供了一种新思路,也为配合饲料调质等热加工过程的工艺优化提供参考。  相似文献   
13.
为了研究不同贮藏期大豆分离蛋白(soy protein isolate,SPI)对千页豆腐品质的影响,该文首先研究了贮藏期对大豆分离蛋白结构的影响,进而探讨贮藏期对大豆蛋白制备千页豆腐的品质的影响。对不同贮藏期的大豆蛋白分别采用了凝胶质构特性、感官评价、羰基含量、大豆蛋白亚基以及巯基的测定,并采用拉曼光谱对大豆蛋白二级结构、二硫键构型以及侧链结构进行了分析,同时采用扫描电镜观察千页豆腐的微结构。结果表明:随着贮藏期的延长,千页豆腐的感官评价变差,由88分降低至44分;其凝胶网络结构逐渐疏松;大豆蛋白羰基含量逐渐上升;巯基含量逐渐下降;二级结构含量改变;凝胶硬度呈下降趋势,硬度值低于234 g时,将无法达到千页豆腐的质量要求。这表明在贮藏期内SPI发生了氧化,导致大豆蛋白质结构发生改变,使其凝胶性质下降。  相似文献   
14.
为评价刮板式清粪机和传送带式清粪机对兔舍内空气环境质量的影响效果,选取除清粪机械不同外,兔只数、兔生长阶段、风机数量、建筑形式均相同的两栋兔舍,分别在2018年4月连续一周对两类兔舍中的温度、相对湿度、氨气(NH3)、二氧化碳(CO2)、甲烷(CH4)、粉尘、硫化氢(H2S)浓度进行检测。(1)兔舍外、刮板式舍和传送带式舍的温度分别为17.79℃、18.39℃、18.43℃,舍外与舍内温度差异不显著(P>0.05),刮板式舍与传送带式舍内温度差异不显著(P>0.05);(2)兔舍外、刮板式舍和传送带式舍的湿度分别为50.17%、50.3%、48.99%,舍外与舍内湿度差异不显著(P>0.05),刮板式舍与传送带式舍内湿度差异不显著(P>0.05);(3)刮板式舍和传送带式舍内NH3、CO2、粉尘的浓度分别为2.99mg/m^3、813.40mg/m^3、0.31mg/m^3和2.13mg/m^3、614.13mg/m^3、0.31mg/m^3,传送带式舍内NH3和CO2浓度显著低于刮板式舍(P<0.05);未检出H2S、CH4。  相似文献   
15.
基于营养组成的鱼饲料比热预测模型   总被引:1,自引:1,他引:0  
为探究鱼饲料在加工过程中的热特性,以调控调质、膨化等工艺过程中的热量供给,同时探究现有的畜禽饲料比热模型对高脂、高蛋白鱼饲料的适应性,该研究设置3个粗蛋白水平(30%、40%、50%)和3个粗脂肪水平(5%、11%、17%)共9种配方,以代表不同食性的鱼用饲料,并使用差式扫描量热仪(Differential Scanning Calorimetry,DSC)测定9种配方分别在20~120℃温度范围和20%~26%含水率范围的比热,并分析上述4个因素对比热的影响规律,构建了比热关于4个因素的预测模型。试验结果表明,鱼饲料比热显著受含水率、温度、粗蛋白质量分数及粗脂肪质量分数的影响(P0.001),各因素的主次顺序为含水率、温度、粗蛋白质量分数、粗脂肪质量分数。比热随含水率和粗蛋白质量分数的增加均呈线性增加规律,而随粗脂肪质量分数的增加线性减小;比热与温度呈非线性关系,为二次回归关系。在所有试验中,鱼饲料比热的变化范围为1.70~2.70kJ/(kg·℃)。基于试验数据建立了比热关于加工工艺参数(温度及含水率)和营养组成(粗蛋白质量分数及粗脂肪质量分数)的多元回归模型(R~2=0.991),可以提高现有研究中畜禽饲料比热预测模型的适应性,有效预测鱼饲料在此研究变量范围内的比热。  相似文献   
16.
鱼膨化饲料热风干燥动力学模型及湿热特性   总被引:2,自引:1,他引:1  
热风干燥是水产膨化饲料加工过程中极为重要的工序。为了探究水产膨化饲料在热风干燥过程中的湿热特性变化规律,该研究以草鱼(成鱼)膨化饲料为对象,设置热风温度(60~100℃)和风速(0.5~1.5m/s)2个试验因素,在自行设计的热风干燥机上进行干燥试验。结果表明,在同一风速条件下,饲料的干燥速率随着热风温度的升高而显著增大(P0.01)。同样的,在同一热风温度条件下,增大风速可以提高干燥速率。使用Verma模型拟合上述试验数据,决定系数(R~2)、离差平方和(χ~2)、均方根误差(RMSE)和平均相对误差(e)的计算结果表明该模型对草鱼膨化饲料在不同干燥条件下的试验数据具有较高的预测精度。同时分别建立了Verma模型参数关于热风温度和风速的回归模型,且回归模型R~2均大于0.979。低场核磁共振(Low-Field Nuclear Magnetic Resonance analysis,LF-NMR)的横向弛豫时间(T_2)谱显示,随着干燥过程的进行,T_(21)峰面积逐渐减小,即不易流动水占比显著减少(P0.01);而且弛豫曲线有整体向左偏移的趋势,说明水分与底物的结合更加紧密,自由度降低。红外热像图显示,在干燥时间为5min时,饲料出现了边角效应;在干燥时间为15 min和20 min时,部分中心处饲料出现了过热效应。上述研究可为草鱼膨化饲料干燥工艺参数的选择提供参考,并为其他种类水产饲料热风干燥湿热特性的研究提供新思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号