首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
林业   4篇
农学   26篇
基础科学   1篇
  8篇
综合类   3篇
农作物   2篇
畜牧兽医   19篇
植物保护   4篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
51.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   
52.
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20°C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32°C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 µmol m−2 s−1; RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28°C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering–podding and podding–maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32°C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28°C, 33.6 and 34 days at 40/30°C and 45.6 and 47 days at 42/32°C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28°C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage—assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25°C, compared with 38/28°C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28°C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20°C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30°C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25°C and above, at controlled conditions.  相似文献   
53.
The mechanisms affecting the heat sensitivity of chickpea are largely unknown. Heat-tolerant (ICCV07110, ICCV92944) and heat-sensitive (ICC14183, ICC5912) chickpea genotypes were sown in February in the soil-filled pots. At the time of flowering, these were subjected to varying day/night temperatures of 30/20, 35/25, 40/30 and 45/35°C in the growth chambers (12 h light/12 h dark; light intensity, 250 μmol m?2 s?1, 80% relative humidity). The pollen viability, pollen germination, tube growth, pollen load and stigma receptivity decreased with increases in temperatures to 45/35°C. The heat-tolerant genotypes experienced significantly less damage to pollen and stigma function. Membrane integrity, chlorophyll content, photochemical efficiency and cellular oxidizing ability were inhibited by the increase in temperature, with greater impacts on the sensitive genotypes. Oxidative injury as lipid peroxidation and hydrogen peroxide content was significantly greater in sensitive genotypes at 40/30 and 45/35°C. Enzymatic and non-enzymatic antioxidants showed increased levels at 40/30°C, but decreased considerably at 45/35°C. Heat-tolerant genotypes possessed greater activity of ascorbate peroxidase and glutathione reductase, along with higher levels of ascorbate and reduced glutathione at 40/30 and 45/35°C. Biomass, pod set and yield were not affected significantly at 35/25°C, but began to decrease at 40/30°C and were lowest at 45/35°C. The sensitive genotypes were not able to set any pods at 45/35°C, whereas the tolerant genotypes produced only few fertile pods at this temperature. It was concluded that heat stress leads to loss of pollen as well as stigma function and induces oxidative stress in the leaves that cause failure of fertilization and damage to the leaves, respectively.  相似文献   
54.
Genetic variation for number of flowers per axis in chickpea (Cicer arietinum L.) includes single-flower, double-flower, triple-flower and multi-flower traits. A double-flowered (DF) line ICC 4929, a triple-flowered (TF) line IPC 99-18 and a multi-flowered (MF) line JGM 7 were intercrossed in all possible combinations and flowering behavior of parents, F1s and F2s was studied to establish allelic relationships, penetrance and expressivity of genes controlling number of flowers per axis in chickpea. The F1 from ICC 4929 (DF) × IPC 99-18 (TF) cross were double-flowered, whereas F1 from ICC 4929 (DF) × JGM 7 (MF) and IPC 99-18 (TF) × JGM 7 (MF) crosses were single-flowered. The F2 from ICC 4929 (DF) × IPC 99-18 (TF) cross gave a good fit to a 3:1 ratio for double-flowered and triple-flowered plants. The F2 from ICC 4929 (DF) × JGM 7 (MF) cross segregated in a ratio of 9:3:3:1 for single-flowered, double-flowered, multi-flowered and double-multi-flowered plants. The F2 from IPC 99-18 (TF) × JGM 7 (MF) cross segregated in a ratio of 9:3:4 for single-flowered, triple-flowered and multi-flowered plants. The results clearly established that two loci control number of flowers per axis in chickpea. The double-flower and triple-flower traits are controlled by a single-locus (Sfl) and the allele for double-flowered trait (sfl d ) is dominant over the allele for triple-flower trait (sfl t ). The three alleles at the Sfl locus has the dominance relationship Sfl > sfl d > sfl t . The multi-flower trait is controlled by a different gene (cym). Single-flowered plants have dominant alleles at both the loci (Sfl_ Cym_). The double-flower, the triple-flower and the multi-flower traits showed complete penetrance, but variable expressivity. The expressivity was 96.3% for double-flower and 76.4% for double-pod in ICC 4929, 81.2% for triple-flower and 0.0% for triple-pod in IPC 99-18, and 51.3% for multi-flower and 24.7% for multi-pod in JGM 7. Average number of flowers per axis and average number of pods per axis were higher in JGM 7 than double-flowered line ICC 4929 and triple-flowered line IPC 99-18. The results of this study will help in development of breeding strategies for exploitation of these flowering and podding traits in chickpea improvement.  相似文献   
55.
Genetic engineering can enhance abiotic stress tolerance of plants, thereby increasing productivity. The present study investigates allergenicity of osmotin protein used for developing transgenic crops. Bioinformatic analysis of osmotin was performed using SDAP and Farrp allergen databases. Osmotin was cloned in pET22b+ vector, purified to homogeneity, and analyzed for digestibility, heat stability, and IgE binding using atopic patients' sera. Osmotin showed 40-92% and 48-75% homology with allergens in SDAP and Farrp databases, respectively. These cross-reactive allergens were from apple, tomato, peach, capsicum, kiwi fruit, and cypress. Osmotin was resistant to pepsin digestion and heat treatment at 90 °C for 1 h. Osmotin protein showed dose-dependent inhibition with pooled patients' sera. It showed significant IgE binding with 22 of 117 patients' sera who were sensitized to tomato and apple, thus indicating cross-reactivity among tomato, apple, and osmotin allergens. In conclusion, osmotin was identified as a potential allergen and showed cross-reactivity with tomato and apple allergens.  相似文献   
56.
With an objective to evaluate the follicular dynamics and vascularity changes in follicles and corpus luteum, the ovaries of cyclic Surti buffaloes (n = 9) were examined daily sequentially by transrectal B‐mode and colour flow mode (CFM) ultrasonography starting from the day of oestrus till the onset of next oestrus. Higher proportion of buffaloes evidenced one‐wave cycle (66.66%) compared to two‐wave cycle (33.34%) with none showing a three‐wave cycle. The dominant follicle of the first follicular wave was the ovulatory follicle and persisted for 19.70 ± 0.50 days compared to its persistence for 16.5 ± 1.45 days in a two‐wave cycle. The maximum diameter of the ovulatory follicle in a one‐wave and two‐wave cycle did not differ yet their linear growth rates were significantly lower (p < 0.01) in a one‐wave cycle. Colour flow mode examination of follicles revealed that the percentage of follicles with detectable blood flow in the subsequently determined largest follicle (dominant follicle) was not different from that in the second largest follicle before follicle deviation. The blood flow in the dominant follicle increased significantly on the day of oestrus. The mean diameter and blood flow to the corpus luteum (CL) increased linearly and significantly from Day 5 of oestrus till Day 13 after which both parameters started declining. At or around Day 16, there was precipitous fall in the blood supply to the CL and CL diameter that continued declining thereafter to reach the lowest around Day 20 of the oestrous cycle. Rise in plasma progesterone concentrations was synchronous to CL diameter and vascularity and showed significant and positive correlations. It was concluded that Surti buffaloes evidence a preponderance of one‐wave follicular growth pattern with a significant increase in the vascularity of ovulatory follicle on the day of oestrus and corpus luteum on Day 13 of the oestrous cycle.  相似文献   
57.
58.
A total of 1023 dogs of different breeds from different parts of Uttar Pradesh State were examined for the presence of Taenia hydatigena, and 810 sheep, 1015 goats and 1040 pigs were examined for the presence of Cysticerus tenuicollis, to determine the incidence of these parasites. In dogs, the incidence of T. hydatigena was found to be 40.95%. The rate of infection was higher in street dogs than in dogs kept indoors.Cysticercus tenuicollis was found in 37.03% of sheep, 27.29% of goats and 8.30% of pigs. The rate of infection was higher in sheep than in goats or pigs. A high incidence of infection was found in the rainy season. The intensity of infection was higher in old than in young animals.  相似文献   
59.
The serum enzymes of pigs naturally infected with the metacestodes of Taenia solium and of uninfected pigs were assayed. Aspartate aminotransferase, alanine aminotransferase, ornithine carbamyl transferase, sorbitol dehydrogenase, lactate dehydrogenase, isocitrate dehydrogenase, alkaline phosphatase and ceruloplasmin activities were significantly increased in the serum of the infected pigs.  相似文献   
60.
Jute is one of the most important fibre crops, which is second only to cotton in providing environment-friendly (biodegradable and renewable) ligno-cellulose fibre. In order to improve this largely neglected crop, we conducted a preliminary study involving the following: (i) analysis of nature and extent of the genetic variability for fibre yield and four other related traits in a set of 81 genotypes belonging to two commercially cultivated Corchorus species (45 genotypes of C. olitorius + 36 genotypes of C. capsularis), (ii) development and analysis of a set of simple sequence repeat (SSR) markers from C. olitorius, and (iii) use of a sub-set of SSRs for assessment of genetic diversity in the above set of 81 genotypes. The results suggested quantitative nature of fibre yield and other related traits, with a preponderance of dominance component in genetic variance. A sub-set of 45 SSRs derived from C. olitorius, when used for a study of DNA polymorphism and genetic diversity, showed high transferability of these C. olitorius SSRs to C. capsularis. The average number of alleles for individual SSRs was surprisingly low (3.04 for both species, 2.02 for C. capsularis and 2.51 for C. olitorius), and so was the average polymorphic information content (PIC; 0.23 and 0.24 in two species). In the dendrogram obtained using a similarity matrix, the 81 genotypes were grouped into three clusters, which largely corresponded to the two species, Cluster I belonging mainly to C. capsularis and the other two closely related clusters (clusters II and III) belonging to C. olitorius. It was also shown that a minimum of 15 SSRs could give the same information as 41 SSRs, thus making many SSRs redundant. The SSR markers developed during the present study and to be developed in future will prove useful not only for evaluation of genetic diversity, but also for molecular mapping/QTL analysis, and for comparative genome analysis of the two Corchorus species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号