首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
林业   5篇
  11篇
综合类   1篇
水产渔业   1篇
畜牧兽医   5篇
园艺   1篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1998年   1篇
  1996年   1篇
  1984年   1篇
  1966年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   
22.
23.
24.

Key message

Soil texture and temperature-related variables were the variables that most contributed to Nothofagus antarctica forest height in southern Patagonia. This information may be useful for improving forest management, for instance related to the establishment of silvopastoral systems or selection of suitable sites for forest reforestation in southern Patagonia.

Context

Changes in forest productivity result from a combination of climate, topography, and soil properties.

Aims

The relative importance of edaphic and climatic variables as drivers of productivity in Nothofagus antarctica forests of southern Patagonia, Argentina, was evaluated.

Methods

A total of 48 mature stands of N. antarctica were selected. For each study site, we measured the height of three mature dominant trees, as an indicator of productivity. Seven soil, five spatial, and 19 climatic features were determined and related to forest productivity. Through partial least squares regression analyses, we obtained a model that was an effective predictor of height of mature dominant trees in the regional data set presented here.

Results

The four variables that most contributed to the predictive power of the model were altitude, temperature annual range, soil texture, and temperature seasonality.

Conclusion

The information gathered in this study suggested that the incidence of the soil and temperature-related variables on the height of dominant trees, at the regionally evaluated scale, was higher than the effect of water-related variables.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号