首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   16篇
林业   1篇
  2篇
综合类   13篇
农作物   1篇
畜牧兽医   128篇
植物保护   2篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   21篇
  2012年   2篇
  2011年   3篇
  2010年   10篇
  2009年   8篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
131.
132.
The aim of this study was to asses the variation in the morphology of the seminal epithelium in relation to natural photoperiod in male cats. Tom cats (n = 240) were castrated every other week throughout the year. Each testis was fixed in Bouin's solution and cut into sections. The percentage of tubules with round spermatids (RS), elongated spermatids (ES), tailed spermatids (TS), mature spermatids (MS) and the number of Sertoli cells (SC) and Leydig cells (LC) were recorded in each sample. Testicles from males during short days (SHD) had a higher percentage of tubules with RS and ES compared to testicles from males during long days (LHD, 31.3 ± 0.6 vs 2.1 ± 0.6%, p < 0.001; 30.9 ± 0.7 vs 11.0 ± 0.7%, p < 0.001). Conversely, testicles from males during SHD had a lower percentage of tubules with TS and MS compared to testicles from males during LHD (24.5 ± 0.8 vs 29.7 ± 0.8%, p < 0.01; 13.1 ± 1.2 vs 57.0 ± 1.2%, p < 0.01). Furthermore, testicles from males during SHD had a higher number of SC and lower number of LC compared to testicles from males during LHD (11.4 ± 0.1 vs 8.0 ± 0.1%, p < 0.01; 19.2 ± 1.0 vs 38.0 ± 1.0%, p < 0.01). In conclusion, there are seasonal changes in testis cell morphology in the tom which may be related to seasonal sperm production.  相似文献   
133.
Nine adult horses were anesthetized for a nonsurvival abdominal adhesion study. Horses were randomly assigned into two groups to receive endotracheal tube cuff pressures of either 80 cm H2O (Group P80) or 120 cm H2O (Group P120). After intubation (Bivona 30 mm ID), anesthesia was maintained with isoflurane. Horses were ventilated 10 times per minute with a suitable inspiratory pressure to maintain Pe ′CO2 in the 35–40 mm Hg (4.7–6.0 kPa) range. Cuff pressure was continuously monitored with a pressure transducer (TruWave, Baxter) calibrated to the atmospheric pressure and maintained at a constant pressure. Twenty‐five millilitres of methylene blue dye in saline were instilled proximal to the cuff over 5 minutes. The horses were euthanized 123 ± 23 minutes later (mean ± SD). Immediately, the trachea was opened distal to the tip of the endotracheal tube, and the mucosa was observed for evidence of dye leaking past the cuff. The cervical trachea was resected and the lumen exposed by a ventral longitudinal incision. Biopsies (1–2 rings) were obtained at mid‐cuff level and distal to the tip of the endotracheal tube, and placed in formalin for later histologic examinations (H&E stain). Methylene blue stain was not observed distal to the endotracheal tube cuff in any horse. Visual examination of the tracheal mucosa revealed hyperemic or hemorrhagic lesions at the level of cuff contact both ventrally and dorsally. Histologic changes included epithelium damage, submucosal neutrophil infiltrates, and acute submucosal hemorrhages. P80 horses had none or focal to multifocal lesions on the ventral and dorsal aspects of the rings. P120 horses had multifocal to diffuse lesions on all aspects (dorsal, ventral, and lateral). We concluded that the endotracheal tube cuff produced a seal sufficient to prevent leakage at both pressures. Tracheal damages on gross and microscopic examinations were more severe and occurred more frequently at the higher cuff pressure.  相似文献   
134.
135.
Objective: To establish normal parameters of thromboelastography (TEG) in healthy adult cats. Background: Thromboelastography (TEG) is an in vitro test of coagulation that has been shown to be useful in humans, dogs and select species to identify and quantify alterations of hemostasis (e.g., hypercoagulable and hypocoagulable states). It has also been demonstrated to be useful in monitoring effects of anticoagulant therapies. This test has not been evaluated in cats. Methods: Blood was collected from 25 clinically normal cats by venipuncture using a 21 gauge×3 1/2 inch butterfly catheter and syringe for medial saphenous or jugular venipuncture. A single 1.8 mL sample in 3.8% Sodium Citrate (9:1) was collected from each cat. Recalcified whole blood was analyzed 30 minutes following collection with the TEG® 5000 analyzer (Haemoscope, Niles, IL). Analysis temperature was 37.6°C. TEG parameters recorded included: R‐value (represents initial fibrin formation), K (time from R to standard fixed measure of clot firmness which represents contributions of platelets and fibrinogen), maximum amplitude (MA; represents absolute clot strength), and alpha angle (α; the slope of TEG tracing which represents rate of clot formation). The coagulation index (CI) was derived from the formula generated for humans to provide an overall assessment of whether the sample was hyper‐ or hypocoagulable. Results: Values for the 25 normal cat samples are reported as mean ±2 standard deviations. R=2.97; 1.23–4.72; K=1.54, 0.38–2.71; α=70.70, 57.76–83.65; MA=58.50, 45.26–71.74 and CI=2.27, 0.07–4.46. Compared to historical information obtained on normal dogs, cats have significantly shorter R and K and larger α, MA and CI. Conclusions: TEG does have reproducible performance when used to evaluate coagulation status in normal cats. Compared to dogs, normal cats favor a hypercoagulable state. Species‐specific normal values are necessary for interpretation of TEG results. This test bears potential value for use in future experimental and clinical work to investigate hemostasis in cats receiving anticoagulant therapies or in cats suffering from diseases such as cardiomyopathy which are thought to be associated with altered coagulation status.  相似文献   
136.
137.
Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2α (PGF2α) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 μg of D‐cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14‐dihydro‐15‐keto PGF2α (PGFM; the main metabolite of PGF2α measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p ≤ 0.05). However, only cows treated with PGF2α underwent luteolysis. In the second experiment, endometrial explants of cross‐bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, 1, 10 or 100 μl of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2α were measured by RIA. Ethanol did not induce PGF2α production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2α in extra‐endometrial tissues.  相似文献   
138.
There are indications in the literature that delaying the period between ovarian superestimulation and ovum pick up (OPU) would induce follicles to a condition of initial atresia, which could be beneficial to oocyte development. In this work, we compared three protocols for OPU and in vitro production (IVP) of embryos, in Nellore cattle. Nellore cows (n = 18) were randomly allocated in three groups: Group 1 (OPU), Group 2 [Follicle stimulating hormone (FSH) and OPU] and Group 3 (FSH deprivation and OPU). Three OPUs were performed, and the animals were switched to a different group each time (crossover), in such a way that at the end of the experiment all cows received the 3 protocols. At random stage of the oestrous cycle (D‐2), all follicles ≥ 6 mm were aspirated to induce a new follicular wave 2 days afterwards (D0). In Group 1, OPU was performed on D2 and oocytes were processed to IVP. In Group 2, starting on D0, cows were superstimulated (FSH, Folltropin®, 30 mg administered daily, i.m., during three consecutive days, total dose = 180 mg), and 6 h after the last FSH dose, they received exogenous luteinizing hormone (LH) (12.5 mg, i.m., Lutropin®, D3). The OPU was performed 6 h after LH administration, i.e. 12 h after the last dose of FSH. Animals in Group 3 received the same treatment as those in Group 2, except that LH was administered 42 h after the last dose of FSH, and OPU occurred 6 h later. Therefore, in this group, follicles were deprived of FSH at 48 h. Both cleavage and blastocyst rates were similar (p > 0.05, anova ) among oocytes from Groups 1, 2 and 3, respectively: 77.4% (144/185) and 42.70% (79/185); 75.54% (105/139) and 31.65% (44/139); 63.52% (101/159) and 33.33% (53/159). However, hatched blastocyst rate was higher (p < 0.01) in Group 1 (30.27%, 56/185) when compared with Group 2 (11.51%, 16/139) or 3 (15.72%, 25/159). It is concluded that, contrary to previous work on European breeds (Bos taurus), ovarian superstimulation associated with deprivation of FSH and OPU (Group 3) did not increase IVP of Nellore embryos (Bos indicus). On the contrary, the highest hatched blastocyst rates were observed in oocytes from non‐superstimulated cows.  相似文献   
139.
The study evaluated, in early post‐partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre‐ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF2αand prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 IU of eCG, immediately after PGF2α treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 ± 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 ± 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14‐dihydro‐15‐keto prostaglandin F2α (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre‐ovulatory period was not effective in inhibiting PGFM release, which was lower in P4‐primed than in non‐primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4‐primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号