首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   9篇
林业   31篇
农学   25篇
基础科学   5篇
  68篇
综合类   11篇
农作物   48篇
水产渔业   9篇
畜牧兽医   37篇
园艺   7篇
植物保护   17篇
  2023年   3篇
  2022年   11篇
  2021年   10篇
  2020年   6篇
  2019年   11篇
  2018年   22篇
  2017年   24篇
  2016年   26篇
  2015年   6篇
  2014年   12篇
  2013年   33篇
  2012年   13篇
  2011年   12篇
  2010年   15篇
  2009年   13篇
  2008年   13篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1984年   1篇
  1983年   5篇
排序方式: 共有258条查询结果,搜索用时 31 毫秒
101.
A field study was carried out from April 2014 to August 2014 for two consecutive planting cycles of Zea mays L. on Nyalau Series (Typic Tualemkuts) to determine the short-term effects of co-application of chemical fertilizers, rice straw compost, and clinoptilolite zeolite on (i) ammonium adsorption and desorption, (ii) nitrogen, phosphorus, and potassium uptake and use efficiency, and (iii) yield of Zea mays L. (cobs). Amending urea with rice straw compost and clinoptilolite zeolite improved nitrogen use efficiency because of temporary adsorption and desorption of ammonium on the exchange sites of compost and clinoptilolite zeolite. Combined use of chemical fertilizers, rice straw compost, and clinoptilolite zeolite enhanced uptake of nitrogen, phosphorus, potassium, calcium, and magnesium. Co-application of chemical fertilizers, rice straw compost, and clinoptilolite zeolite can improve the availability of soil nutrients. This approach can also improve nutrient use efficiency and yield of Zea mays L.  相似文献   
102.
Tropical acid soils are highly weathered as they exist under tropical environment with high rainfall and temperature throughout the year, which affects nitrogen availability. Soil organic nitrogen is important in estimating soil nitrogen availability. The combined use of urea and compost in this study was carried out to decrease sole dependence on urea, buffer soil acidification, and reduce nitrogen losses through leaching. Thus, soil buffering capacity, incubation, and organic nitrogen fractionation studies were conducted to determine soil buffering capacity, availability of total nitrogen, organic fractions nitrogen, and inorganic nitrogen in soil after 90 days of incubation following compost. Soil pH, buffering capacity, total nitrogen, organic nitrogen fractions, exchangeable ammonium, and available nitrate were higher in all treatments with compost and combined use of urea and compost. Total hydrolyzable nitrogen, ammonium-nitrogen, (ammonium + amino sugar)-nitrogen, amino sugar-nitrogen, and amino acid-nitrogen were higher in soils with urea and compost suggesting that decomposition of soil organic fractions nitrogen into inorganic nitrogen (ammonium and available nitrate was affected by the addition of urea and compost. Urea can be amended with compost to regulate availability nitrogen in soil for crop use.  相似文献   
103.
Untreated polyethylene terephthalate has limitation in some medical applications, such as wound dressing due to the hydrophobic property. Thereby, Tragacanth Gum (TG) as a natural polysaccharide utilized in polymer solution led to novel semi-bionanofibers of PET/TG blends (15:1, 15:2 and 15:3) through electrospinning method. Fourier transform infrared spectroscopy results confirmed the existence of hydrophilic groups of TG such as hydroxyl groups. Moreover, twice water uptake of PET/TG comparing with PET nanofibers indicated the hydrogel properties, also PET/TG nanofibers possessed high surface wettability through reduction of contact angle from 113 to 0°. Further, differential scanning calorimetry analysis indicated the alteration in the crystalline structure of PET/TG nanofibers that led to faster degradation in various pH values. The SEM images of PET/TG nanofibers displayed the greater average diameter with increasing TG content (283 nm) comparing with PET nanofibers (193 nm). Also introducing more TG in the nanofibers exhibited lower mechanical properties.  相似文献   
104.
In this study, Berberis vulgaris L. wood as an agricultural waste was used for dyeing and functional finishing of cotton. To facilitate the attachment of natural dye, citric acid was used to create carboxylic acid functional groups on cotton fibers. The process of crosslinking of cotton fabric with citric acid was optimized in order to obtain the maximum dyeability with the cationic natural dye. The effects of three important factors including citric acid concentration, sodium hypophosphite concentration and curing temperature on the color strength of the dyed samples with woods of barberry tree were analyzed by response surface methodology and the optimum conditions for obtaining the highest color strength was obtained. The crosslinking of citric acid on cotton fibers was confirmed by FTIR spectroscopy. The dyed sample prepared under the optimum conditions of crosslinking showed good wash and light fastness properties besides very good antibacterial activity against gram-negative and gram-positive bacteria.  相似文献   
105.
Application of urea in lowland rice fields leads to ammonia (NH3) volatilization and environmental pollution, and diminishes nitrogen recovery by rice (Oryza sativa L.). Amending urea with biochar could reduce NH3 loss from urea as well as improve chemical properties of acid soils. An incubation study was conducted using a closed-dynamic air flow system to determine NH3 volatilization from urea and chemical properties of an acid soil (Typic Paleudults). The soil was mixed with three rates of chicken litter biochar (20, 40, and 60 g pot?1) and 1.31 g urea. Mixing an acid soil with biochar (60 g pot?1) in waterlogged to stimulate conditions in paddy condition significantly reduced NH3 loss and total titratable acidity. Biochar application also increased soil pH, total nitrogen, available nitrate, organic matter, total organic carbon, total carbon, available phosphorus, and exchangeable cations. Thus, chicken litter biochar can be used to reduce urea-N loss and ameliorate chemical properties of acid soils. This aspect is being embarked on in our on-going field experiments.  相似文献   
106.
Water shortage is a critical issue worldwide, and it may adversely impact non-food landscape plants. Thus, the impact of two levels of evapotranspiration-based (ETc) water stresses and two biostimulants consisting of s-abscisic acid (s-ABA) and glycine betaine (GB), and their combined applications on perennial ryegrass (Lolium perenne) under climatic and soil conditions of the Intermountain West, USA, were studied. Clippings with 50% ETc had higher percentage dry weight (DW) but lower fresh weight (FW) and chlorophyll index (CI) than those with 75% ETc. The performance rating of plots with 75% ETc was significantly higher (better) than those receiving the 50% ETc treatment. Clippings with the 75% ETc treatment had higher concentrations of nitrogen (N), nitrate, phosphorous (P), sulfur (S), potassium (K), sodium (Na), and copper (Cu) than those with the 50% ETc treatment. Considering all mineral nutrient values, CIs, and performance ratings, we conclude that the application of 75% ETc is sufficient for maintaining a healthy turfgrass with a satisfactory appearance, while we can save 25% water as compared to the application of water at 100%. The application of biostimulants had no effect on clipping or root FWs, DWs, or percentage DWs. Clippings from GB-treated turfgrass had significantly higher N than those from all other biostimulants or non-treated control. Additionally, clippings from the plots with the GB treatment had significantly higher S, K, and Cl but lower Zn. Clippings from the s-ABA-treated turfgrass also had significantly higher K than those in non-treated control. Average performance ratings in s-ABA and GB, and s-ABA and GB were significantly higher than those in non-treated control, underscoring the values of these biostimulants in the reduction of drought stress.  相似文献   
107.

Purpose

This study investigated the extent of metal accumulation by plants colonizing a mining area in Yazd Province in Central Iran. It also investigated the suitability of these plants for phytoextraction and phytostabilization as two potential phytoremediation strategies.

Materials and methods

Plants with a high bioconcentration factor (BCF) and low translocation factor (TF) have the potential for phytostabilization, whereas plants with both BCFs and TFs >1 may be appropriate for phytoextraction. In this study, both shoots and roots of 40 plant species and associated soil samples were collected and analyzed for total concentrations of trace elements (Pb, Zn, and Ag). BCFs and TFs were calculated for each element.

Results and discussion

Nonnea persica, Achillea wilhelmsii, Erodium cicutarium, and Mentha longifolia were found to be the most suitable species for phytostabilization of Pb and Zn. Colchicum schimperi, Londesia eriantha, Lallemantia royleana, Bromus tectorum, Hordeum glaucum, and Thuspeinantha persica are the most promising species for element phytoextraction in sites slightly enriched by Ag. Ferula assa-foetida is the most suitable species for phytostabilization of the three studied metals. C. schimperi, L. eriantha, L. royleana, B. tectorum, M. longifolia, and T. persica accumulated Ag, albeit at low level.

Conclusions

Our preliminary study shows that some native plant species growing on this contaminated site may have potential for phytoremediation.
  相似文献   
108.
Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.  相似文献   
109.
To avoid environmental pollution due to excessive use of inorganic fertilizers, it is essential to increase the availability of nutrients using environmentally friendly resources, such as composts and clinoptilolite zeolite, in soil fertility management. In this study, an attempt was made to use different rates of inorganic fertilizers, compost, and clinoptilolite zeolite to correct the ongoing excessive use of inorganic fertilizers. A pot study using maize (Zea mays L.) as a test crop was carried out to determine the effects of amending inorganic fertilizers with compost and clinoptilolite zeolite on: (i) selected soil chemical properties, and (ii) N, P, and K uptake and use efficiency in maize cultivation. The pot study was conducted for 45 days (tasseling stage of maize). Amending inorganic fertilizers with compost and clinoptilolite zeolite increased soil total N, exchangeable Ca, Mg, K, and available P. Furthermore, P and K uptake and use efficiency of maize were significantly improved upon amending inorganic fertilizers with compost and clinoptilolite zeolite. Soil chemical properties and productivity of maize on acid soils can be improved through co-application of compost and clinoptilolite zeolite. However, field application of the authors’ findings is being evaluated in an on-going field experiment.  相似文献   
110.
Coral reefs are specialized communities that develop clear, well-lit tropical and subtropical water; they provide shelter and canopy for great variety of organisms, living in mean temperature of 20 degrees C. Coral Bleaching and mortality have been associated with elevated seawater temperature. The aim of the study was to investigate coral bleaching and evaluate health condition of the corals. Distribution of coral reefs around Kish Island was determined by the Timed Swim (TS) technique. This survey carried out in 2 times (May and October, 2009) in 2 depths of 3-5 m and 6-10 m. Two Divers swam in constant speed for a set amount of time in three dive sites. The timed swim survey around the Kish Island showed that the most healthy live hard coral assemblages were found in the site called Persian Gulf seaport, whereas the greatest percentage of bleached corals were located in Jurassic Park station, located at the southeast of the Island. Branching corals (Acropora sp.) were bleached among all 3 stations and no sign of recovery could be detected. In Big coral site suitable substrate for accumulation of living organisms including Echinometra mathaie (sea urchin) existed due to presence of great amount of algae on dead corals and rocks. Based on the observation, it seems that the cause of reef destruction in Kish Island fall in to two categories, natural and human impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号