首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   17篇
  国内免费   3篇
林业   26篇
农学   18篇
基础科学   3篇
  193篇
综合类   34篇
农作物   18篇
水产渔业   20篇
畜牧兽医   20篇
园艺   7篇
植物保护   17篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   9篇
  2018年   12篇
  2017年   11篇
  2016年   16篇
  2015年   9篇
  2014年   8篇
  2013年   33篇
  2012年   5篇
  2011年   8篇
  2010年   10篇
  2009年   8篇
  2008年   24篇
  2007年   10篇
  2006年   5篇
  2005年   16篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   9篇
  1990年   2篇
  1989年   14篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有356条查询结果,搜索用时 328 毫秒
51.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   
52.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
53.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   
54.
Hydrological and water-quality measurements were made on a 44·3 ha watershed under forest cover and following deforestation and conversion to an agricultural land-use. Under secondary tropical rainforest, water yield ranged from 2·2 per cent to 3·1 per cent of annual rainfall. Deforestation of 7 per cent of the watershed area increased water yield to 7·0 per cent of annual rainfall. Baseflow increased with deforestation, and increased progressively with time after deforestation. It was 5·1 per cent of annual rainfall in 1979, 15·1 per cent in 1980, 16·4 per cent in 1981 and 17·9 per cent in 1982. In comparison, surface flow was 4·5 per cent in 1979 and 6·2 per cent in 1980, but decreased to 2·3 per cent in 1981 and 2·4 per cent in 1982. Total water yield following deforestation and conversion to agricultural land-use ranged from 9·6 per cent to 21·3 per cent of the annual rainfall received. The dry season flow decreased with time as the dry season progressed, but increased over the years following deforestation. Surface runoff during the rainy season depended on ground cover and soil quality. The extent and severity of soil degradation affected the dynamics of surface flow. Because of actively growing crops, plant nutrient concentrations in surface runoff were low. Forested lysimeters had higher seepage losses than cropped lysimeters, and the water-use efficiency was 1·9–3·6 kg ha−1 mm−1 for cowpeas compared with 6·1–11·0 kg ha−1 mm−1 for maize. The delivery ratio was high immediately after deforestation and decreased to a steady value of about 3·2 per cent within 7 years. The data show five distinct phases of soil degradation in relation to generation of surface runoff. © 1997 John Wiley & Sons, Ltd.  相似文献   
55.
Mass mortality due to necrosis signs occurred in hatchery-reared zoea stage larvae of the mud crab Scylla serrata in Okinawa, Japan, and a causative bacterium was isolated. In this study, we identified and characterized the bacterium by genome analysis, biochemical properties and pathogenicity. The bacterium was a Gram-negative, non-motile, long rod, forming yellow colonies on a marine agar plate. It grew at 20–33°C (not at 37°C) and degraded chitin and gelatin. Phylogenetic analysis of the 16S rRNA gene sequence identified the bacterium as Aquimarina hainanensis. Genome sequence data obtained from Illumina MiSeq generated 29 contigs with 3.56 Mbp in total length and a G + C content of 32.5%. The predicted 16 chitinase genes, as putative virulence factors, had certain homologies with those of genus Aquimarina. Experimental infection with the bacterium conducted on larvae of four crustacean species, brine shrimp Artemia franciscana, freshwater shrimp Caridina multidentata, swimming crab Portunus trituberculatus and mud crab S. serrata, revealed that this bacterium was highly virulent to these species. The present study suggests that the bacterium caused mass mortality in mud crab seed production was A. hainanensis and can be widely pathogenic to crustaceans.  相似文献   
56.
Zeylanicobdella arugamensis (Annelida: Hirudinea), a marine parasitic leech, is currently affecting different species of cultured groupers, hybrid groupers, snappers and sea bass in Malaysia. Dillenia suffruticosa (Dilleniaceae), a medicinal plant found in Sabah, has been selected in our experiment to kill the leeches as a natural control method. The leech‐infested hybrid groupers were collected from aquaculture facilities, and the isolated leeches were challenged against methanol extract of D. suffruticosa leaves. The experiment was carried out using various concentrations of the extracts such as 25, 50 and 100 mg/ml. The methanol extract showed significant antiparasitic activity against Z. arugamensis with 100% mortality at a concentration of 100 mg/ml in 14.39 ± 3.75 min., followed by 50 and 25 mg/ml in 32.97 ± 9.29 and 41.77 ± 5.40 min., respectively. The phytochemical composition of the extract was determined using GC‐MS analysis to understand the nature of the principal compounds responsible for its antiparasitic properties. The leaves of D. suffruticosa demonstrated the presence of different bioactive compounds of various natures with varying percentages. Thus, it could be revealed that the methanol extract of D. suffruticosa mainly contains vital phytochemical compounds and showed an effective antiparasitic activity against the harmful leeches of hybrid groupers.  相似文献   
57.
Flag leaf angle (FLA) in rice (Oryza sativa L.) is one of the important traits affecting F1 seed production by mechanization. To elucidate the genetic mechanism of FLA and mine favorable marker alleles for F1 seed production in rice, we performed a genome-wide association study using phenotypic data over 2 years and genotypic data of 262 pairs of simple sequence repeat (SSR) markers collected from 441 rice accessions. We detected seven SSR marker loci associated with FLA and four loci were novel. The four newly found loci were RM6266 on chromosome 3, RM348 on chromosome 4, RM258 on chromosome 10 and RM7303 on chromosome 11. We found a total of 27 favorable alleles, of which four, i.e., RM348-130 bp, RM7303-90 bp, RM258-180 bp, and RM4835-230 bp, had phenotypic effects larger than 10°. Nine combinations, which increased FLA by 45.7°–94.7° through pyramiding the favorable alleles contained in seven typical accessions, were predicted.  相似文献   
58.
59.
Sodic soils are characterized by high exchangeable sodium on exchange sites, soil pH greater than 8.5, relatively low electrical conductivity, low infiltration rate and dispersed clay. These characteristics restrict the capacity of soil to absorb water, resulting in poor infiltration. Evidently, these soils require application of irrigation water at shorter intervals for crop production. Thus, irrigation strategy for sodic soils differs from that of normal soils. An experiment to determine the suitable irrigation strategy along with methods of application namely: surface (farmer’s practice), sprinkler (double nozzle impact sprinkler), and low-energy water application device (LEWA) were initiated in the year 2012 for rice crop. Irrigation depths of 6 cm in case of surface method and 4 cm in case of sprinkler and LEWA methods were applied at each irrigation event. The irrigation events for rice were scheduled at 2-DAD (days after the disappearance of the ponded water), 3-DAD, and 4-DAD through surface method, and at daily, 1- and 2-day intervals (after initial ponding disappeared) by sprinkler and LEWA methods. Sprinkler and LEWA methods resulted in highest rice yield of 4.4 t ha?1 in irrigated plots at the 2-day interval which was at par with the highest yielding surface-irrigated plot scheduled at 2-DAD. At the same time, irrigation strategy of 2-day interval through sprinkler and LEWA methods registered water saving to the extent of 30–40% over 2-DAD under surface irrigation method. Results revealed that there could be substantial saving of water and energy (electricity and diesel) through the use of sprinkling devices for irrigating rice under sodic soil environments.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号