首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   10篇
林业   69篇
农学   13篇
基础科学   4篇
  214篇
综合类   86篇
农作物   18篇
水产渔业   15篇
畜牧兽医   84篇
园艺   12篇
植物保护   27篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   14篇
  2020年   7篇
  2019年   12篇
  2018年   24篇
  2017年   13篇
  2016年   11篇
  2015年   16篇
  2014年   14篇
  2013年   25篇
  2012年   42篇
  2011年   36篇
  2010年   28篇
  2009年   21篇
  2008年   45篇
  2007年   25篇
  2006年   29篇
  2005年   31篇
  2004年   25篇
  2003年   24篇
  2002年   31篇
  2001年   12篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1960年   1篇
排序方式: 共有542条查询结果,搜索用时 31 毫秒
51.
We tested whether a ‘Lockerbraunerde’ from the heights of the Zittauer Gebirge in Eastern Saxony exhibited andic properties and classified it according to the rules of the World Reference Base for Soil Resources (WRB, 1998). To achieve this, we characterized a selected soil by means of routine soil analysis; selective dissolution procedures; X‐ray diffraction (XRD); X‐ray fluorescence (XRF), and Transmission Electron Microscopy (TEM). We used field criteria (Thixotropy; NaF‐field test) to obtain a map of the spatial distribution of soils with potential andic properties. We found that the soil fulfilled all requirements to be classified as an Andosol. The composition of the colloidal phases was exactly intermediate between sil‐andic and alu‐andic. At the same time, the soil had a spodic horizon [determined through the depth function of the Alo+½Feo criterion]. As there was no indication of vertical translocation of metal‐organic complexes, but sufficient evidence to suggest the downward movement of mobile Al/Si‐phases, we maintain to classify the soil as an Endoskeleti‐Umbric Andosol and propose the existence of a pedogenetic pathway intermediate between Podsolisation and Andosolization. We conclude that the spodic horizon in the WRB is not well defined because of the dominance of the Alo+½Feo criterion over morphological evidence. We further suggest the German soil taxonomy to be modified to better represent soils containing short range order minerals.  相似文献   
52.
In order to contribute to the analysis and solution of regional scale environmental problems in East Asia, we developed a tool for the comprehensive assessment of alternative policy options to improve air quality. This tool projects the future regional energy supply, calculates the emission levels of sulfur dioxide and estimates the geographical pattern of sulfur deposition resulting from emissions. Sulfur deposition in Japan through 2030 was forecasted for various energy supply and emission control scenarios using the analysis tool. Future sulfur depositions were calculated from the source-receptor matrix for 1995 and the growth rate of emission for the source subregion. In the case of the current legislation scenario, anthropogenic SO2 emissions in East Asia would grow by 34 percent and sulfur deposition in Japan would increase by approximately 20 percent between 1995 and 2030. This increase in sulfur deposition over these 35 years is sligthly less than the contribution from volcanic emission to sulfur deposition in Japan. In the case of the hypothetical dirty scenario for China, sulfur deposition in several grids which face the Sea of Japan would double by 2030.  相似文献   
53.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   
54.
Background  Tetracycline is a widely used antibiotic in animal production. Significant amounts of the substance reach the soil via feces, urine and manure application. As tetracycline is a persistent compound with antibacterial activity, its presence in soil may have undesired direct and indirect effects. These have been investigated so far focusing on effects on selected microbial functions. Objectives  The aim of the present study was to obtain comprehensive information on potential effects of tetracycline on the soil microflora under environmentally relevant conditions. The investigations included function and structure of the microbial biocoenosis and the distribution of resistance genes. Methods  Pig manure rich in tetracycline resistance genes was applied to a sandy soil. This soil as well as an unamended soil were additionally treated with several concentrations of tetracycline. The spiked soils were incubated in outdoor lysimeters for several months. Substrate induced respiration, PLFAs, ten selected resistance genes, and the concentrations of tetracycline were determined. Results  The test concentrations, though far exceeding environmental relevance, caused only small effects. An establishment of resistance could not be detected. Applied resistance genes were not detectable at the end of the study even in the presence of added tetracycline. Conclusion  Due to the high sorption capacity of the antibiotic, environmentally relevant concentrations of tetracycline do not seem to cause undesired effects on the soil microflora.  相似文献   
55.
Viewing of polar bears (Ursus maritimus) from tundra vehicles has been offered at Churchill, Manitoba since the early 1980s. This form of wildlife viewing has provided a unique and safe way for tourists to learn about polar bears. However, these activities have largely been carried out without examining possible effects on polar bear behaviour. We studied vigilance behaviour (a scanning of the immediate vicinity and beyond) of resting polar bears to evaluate impacts from tundra vehicle activity. Focal animal sampling was used to examine whether a difference in vigilance behaviour existed when vehicles were present. We recorded the numbers of head-ups, vigilance bout length, and between-bout intervals for polar bears. In general, the frequency of head-ups increased, and the between-bout intervals decreased for male bears, when vehicles were present. Female bears behaved opposite to males. The vigilance bout lengths did not differ significantly between vehicle presence and absence. Vigilance behaviour of male bears was not magnified with increasing numbers of vehicles; therefore the threshold is one vehicle. We suggest that manipulative studies be conducted to examine how distances between vehicles and bears, tundra vehicle activity in the immediate vicinity of a bear during viewing, and noise of tourists affect increased vigilance.  相似文献   
56.
We used the soil‐core translocation method to investigate the effect of increased temperature on above‐ and below‐ground phytomass and organic matter in cool alpine areas. The translocation of undisturbed soil cores from a high alpine site (2525 m a.s.l.) to an alpine site near the timberline (1895 m a.s.l.) achieved an effective artificial warming of 3.3 K. From a methodological point of view, the translocation of soil cores was performed successfully. Soil cores moved to a new site at the same altitude showed no change in above‐ and below‐ground vegetation, bulk density, and soil skeleton. At both sites, soils were Haplic Podzols with a similar chemistry and clay mineralogy. At the lower elevation site, however, podzolization processes seemed to be more pronounced. As a consequence, the translocation of the soil cores probably led to a disturbance of the actual steady state that had been established after about 10,000–13,000 years of soil formation. This might have affected the adaptability of the vegetation system. Therefore, it cannot be fully excluded that the experimental design influenced the results. Translocation of soil cores from a very cool to a warmer site led to a distinct decrease in above‐ground phytomass (about –45%) over the experimental period of two years. Below‐ground phytomass significantly decreased (up to –50%) in the topsoil (0–5 cm) after artificial warming. Possible mechanisms are that roots reduced photosynthesis and hence C flow below‐ground, a reduction of soil moisture that would have led to root death (not a very probable cause, however) or an abrupt change in the radiation duration and flux which affected root growth (also not very probable). Fast climate change exceeded the ability of the above‐ground and below‐ground phytomass to adapt quickly. Whether the decrease in phytomass was a short‐term or a long‐term response to climate warming remains uncertain. Based on a gradient study (climosequence at the same locality), we hypothesize that the decreased plant productivity might be a short‐term effect.  相似文献   
57.
58.
Cattle are a natural reservoir for Shiga toxigenic Escherichia coli (STEC), however, no data are available on the prevalence and their possible association with organic or conventional farming practices. We have therefore studied the prevalence of STEC and specifically O157:H7 in Swiss dairy cattle by collecting faeces from approximately 500 cows from 60 farms with organic production (OP) and 60 farms with integrated (conventional) production (IP). IP farms were matched to OP farms and were comparable in terms of community, agricultural zone, and number of cows per farm. E. coli were grown overnight in an enrichment medium, followed by DNA isolation and PCR analysis using specific TaqMan assays. STEC were detected in all farms and O157:H7 were present in 25% of OP farms and 17% of IP farms. STEC were detected in 58% and O157:H7 were evidenced in 4.6% of individual faeces. Multivariate statistical analyses of over 250 parameters revealed several risk-factors for the presence of STEC and O157:H7. Risk-factors were mainly related to the potential of cross-contamination of feeds and cross-infection of cows, and age of the animals. In general, no significant differences between the two farm types concerning prevalence or risk for carrying STEC or O157:H7 were observed. Because the incidence of human disease caused by STEC in Switzerland is low, the risk that people to get infected appears to be small despite a relatively high prevalence in cattle. Nevertheless, control and prevention practices are indicated to avoid contamination of animal products.  相似文献   
59.
This study determined the uptake of three model compounds, applied in the presence and absence of surfactants, into the leaves of three plant species (Chenopodium album L, Hedera helix L and Stephanotis floribunda Brongn). The results with 2-deoxy-D-glucose, 2,4-dichlorophenoxyacetic acid and epoxiconazole in the presence ofsurfactants (the polyethylene glycol monododecyl ethers C12EO3, C12EO6, C12EO10 and a trisiloxane ethoxylate with mean EO of 7.5, all used at one equimolar concentration and therefore different percentage concentrations) illustrate that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong positive determinant of uptake. This held true for all the xenobiotics studied over a wide concentration range in the presence of these surfactants. Uptake on a unit area basis (nmol mm(-2)) could be related to the initial dose of xenobiotic applied per unit area (ID) by an equation of the form: Uptake = a [ID]b at time t = 24h. ID is given by the mass of xenobiotic applied, M divided by the droplet spread area, A. Total mass uptake is then calculated from an equation of the form: Total Uptake = a [ID]b x A.  相似文献   
60.
ABSTRACT Specific floral organs including the calyptra, stigma, and receptacle area of glasshouse-grown grapevines (Vitis vinifera cv. Cabernet Sauvignon) were inoculated with aqueous suspensions of Botrytis cinerea conidia, and the initial steps involved in colonization and infection of the host tissues were studied for several days postinoculation using light microscopy as well as scanning and transmission electron microscopy. Conidia germinated on all floral organs examined and became attached to the host surface within 48 h after inoculation. However, in all cases the vast majority of conidia accumulated in a channel-like gap between the ovary and the calyx that extended in a narrowing fashion into the flower interior where the ovary joined the receptacle. Very few conidial germ tubes were detected in the style following inoculation of the stigma, and no evidence for their growth toward the ovaries could be found. In contrast, hyphae were more abundant in the receptacle area, regardless of the site of inoculation. Tips of the calyx became necrotic and mycelium formed in the gap between ovary and calyx within 72 h following inoculation, providing a major point of colonization and infection. B. cinerea colonized dehiscent calyptras within 72 h of inoculation, providing a potential source of inoculum from calyptras that remained stuck in the cluster. The results suggest that the grape flower's receptacle area is the predominant site of infection for B. cinerea, although a minor portion of infections may also occur through the stigma and style.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号