首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   16篇
林业   21篇
农学   13篇
基础科学   1篇
  60篇
综合类   14篇
农作物   24篇
水产渔业   45篇
畜牧兽医   43篇
园艺   2篇
植物保护   20篇
  2022年   12篇
  2021年   15篇
  2020年   15篇
  2019年   14篇
  2018年   23篇
  2017年   15篇
  2016年   17篇
  2015年   9篇
  2014年   9篇
  2013年   20篇
  2012年   21篇
  2011年   22篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   1篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1988年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
41.
Bisphenol A (BPA) and reactive black 5 (RB5) dye are among the most persistent and non-biodegradable contaminants in water which require an urgent need for the development of effective removal method. The ubiquitous existence of both contaminants could interfere with the human health and aquatic environmental balance. Photocatalytic process as one of advanced oxidation processes (AOPs) has shown high performance for degradation of organic compounds to the harmless materials under sensible condition. Therefore, this study aims to develop a visible-light-driven photocatalyst that can efficiently degrade BPA and RB5 present in household water. N-doped TiO2 were successfully synthesized via simple and direct sol–gel method. The prepared TiO2 nanoparticles were characterized by field emission scanning microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauere Emmette Teller (BET) analysis. The incorporation of nitrogen in TiO2 lattice exhibited excellent optical responses to visible region as revealed by UV–Vis–NIR spectroscopy absorption capability at 400–600 nm. The photocatalytic activity of the N-doped TiO2 nanoparticles was measured by photocatalytic degradation of BPA and RB5 in an aqueous solution under visible-light irradiations. Degradation of BPA and RB5 was 91.3% and 89.1%, respectively after 360 min illumination. The degradation of BPA and RB5 by N-doped TiO2 was increased up to 89.8% and 88.4%, respectively under visible-light irradiation as compared to commercial TiO2 P25. This finding clearly shows that N-doped TiO2 exhibits excellent photocatalytic degradation of BPA and RB5 under visible irradiation, hence have a promising potential in removing various recalcitrant contaminants for water treatment to fulfill the public need to consume clean water.
Graphical Abstract ?
  相似文献   
42.
In this work, the effects of various operating parameters (pressure, pH, BPA concentration, and filtration time) toward bisphenol A (BPA) removal via ultrafiltration (UF) membrane system were investigated using response surface methodology (RSM). Historical data design of RSM was used to obtain the interaction between variables and response as well as optimizing the process. The analysis of variance (ANOVA) showed that the third-order polynomial model was significant in which pH and filtration time were identified as significant terms that influence BPA removal. The 3D response surface plots revealed the two-factor interaction between independent and dependent variables. The optimization process of the model predicted optimum conditions of 99.61% BPA removal at 1 bar, pH 6.7, 10 μg/L BPA concentration, and 10-min filtration time. The predicted optimum conditions for BPA removal were consistent with the obtained experimental values, indicating reliable application of historical data design RSM for modeling BPA removal in UF membrane system.  相似文献   
43.
Plants are sessile organisms that experience various abiotic stresses during their lifespan and try to adapt to these environmental stresses by manipulating their physiological, biochemical, cellular, and molecular mechanisms. Salinity is one of the important abiotic stress that affects the metabolism and physiology of plant cells that leads to serious damage to crops and productivity. We investigated the response of two contrasting (salt susceptible and tolerant) cultivars during saline stress by modulating its effect with the application of an important natural biostimulant panchagavya (PG). The results showed that the salinity stress greatly influenced and negatively affects the plant growth, biochemical attributes, and induces the expression of various genes in both cultivars. Furthermore, we assessed the effect of PG alone and by amending with NaCl to alleviate the saline stress which showed a significant enhancement of biochemical and physiological characteristics in both cultivars. Furthermore, we assessed the response of seven autophagy associated gene (ATG1, ATG3, ATG4, ATG6, ATG7, ATG8, and ATG9), BAX Inhibitor -1 (BI-1), Mitogen activated Protein Kinase–1 (MAPK-1), WRKY53, Catalase -1 (CAT-1), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPX) genes in rice that displayed the differential expression pattern during saline stress in both cultivars. We concluded that saline stress can be manipulated by the application of PG and positively regulate the physiological, biochemical, and gene expression response in salt-susceptible and -tolerant rice cultivars. Furthermore, the current study also suggested that salinity is a mutifactorial and multigenic response. Autophagy and programmed cell death regulated along with salinity and was helpful in adapting the tolerance against the stress condition.  相似文献   
44.
A glasshouse experiment was conducted to elucidate the influence of elemental sulfur (S) application rates (0, 0.5, 1.0, and 2.0 g S kg?1 soil) on the release and uptake of S at 0, 20, and 40 days after incubation. Results showed that there was a progressive upward trend in maize leaves, stem, and root S content with application of elemental S. However, maize production followed a nonlinear model. Plants grown in untreated soils suffer from S deficiency and addition of elemental S at a rate of 0.5 g S kg?1 soil alleviated S deficiency. The decrease in maize performance due to the highest S application rate was not related to S toxicity. The greatest leave, stem, and root productions were obtained at S concentrations of 0.41, 0.58, and 0.2%, respectively. Overall, application of elemental S at a rate of 0.5 g S kg?1 soil is recommended for maize performance improvement.  相似文献   
45.
Phytoremediation using vetiver grass (Vetiveria zizanioides) has been regarded as an effective technique for removing contaminants in polluted water. This study was conducted to assess the removal efficiency of heavy metals (Cu, Fe, Mn, Pb, Zn) using vetiver grass (VG) at different root lengths and densities and to determine metals uptake rate by plant parts (root and shoot) between treatments (low and high concentration). Removal efficiency for heavy metals in water by VG is ranked in the order of Fe>Pb>Cu>Mn>Zn. Results showed that VG was effective in removing all the heavy metals, but removals greatly depend on root length, plant density and metal concentration. Longer root length and higher density showed greater removals of heavy metals due to increased surface area for metal absorption by plant roots. Results also demonstrated significant difference of heavy metals uptake in plant parts at different concentrations indicating that root has high tolerance towards elevated concentration of heavy metals. However, the effects were less significant in plant shoot suggesting that metals uptake were generally higher in root than in shoot. The findings have shown potential of VG in phytoremediation for heavy metals removal in water thus providing significant implication for treatment of metal-contaminated water.  相似文献   
46.
An automated wood texture recognition system of 48 tropical wood species is presented. For each wood species, 100 macroscopic texture images are captured from different timber logs where 70 images are used for training while 30 images are used for testing. In this work, a fuzzy pre-classifier is used to complement a set of support vector machines (SVM) to manage the large wood database and classify the wood species efficiently. Given a test image, a set of texture pore features is extracted from the image and used as inputs to a fuzzy pre-classifier which assigns it to one of the four broad categories. Then, another set of texture features is extracted from the image and used with the SVM dedicated to the selected category to further classify the test image to a particular wood species. The advantage of dividing the database into four smaller databases is that when a new wood species is added into the system, only the SVM classifier of one of the four databases needs to be retrained instead of those of the entire database. This shortens the training time and emulates the experts’ reasoning when expanding the wood database. The results show that the proposed model is more robust as the size of wood database is increased.  相似文献   
47.
This study is aimed at assessing the ability of two endophytic bacteria originally isolated from healthy oil palm roots, Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3) to induce resistance in susceptible Berangan banana against Fusarium oxysporum race 4 (FocR4). Increased accumulation of resistance-related enzymes such as peroxidase (PO), phenylalanine ammonia lyase (PAL), lignithioglycolic acid (LTGA), and pathogenesis-related (PR) proteins (ehitinase and β-1,3-glucanase) has been observed in plantlets treated with endophytic bacteria UPMP3 and UPMB3 singly or as mixture under glasshouse conditions. Pre-inoculation of banana plantlets with UPMP3 showed a significant reduction in Fusarium wilt incidence 72 d after challenged inoculation with FocR4. UPMB3 was less effective in suppressing Fusarium wilt compared to UPMP3, whereas, the mixture of both endophytes showed an intermediate effect. Based on these results, it is concluded that UPMP3 could be a promising biological control agent that can trigger resistance against Fusarium wilt in susceptible Berangan banana.  相似文献   
48.
49.
Hyacinth bean (Lablab purpureus L.) serves as a good source of vegetable proteins in human diet. Its seeds and pods contain as much as 20–28% protein. Besides, it contains tyrosinase enzyme, which has potential use in the treatment of hypertension. Phosphorus deficiency causes a serious yield and quality constraint of beans at Aligarh, Western Uttar Pradesh, India. To address the problem, a pot experiment was conducted to study the effect of basal phosphorus application on the agricultural performance of this medicinal legume. The plants were grown in pots containing soil supplied with five levels of phosphorus viz. 0, 25, 50, 75 and 100 mg P kg−1 soil as potassium dihydrogen orthophosphate (KH2PO4). The growth and other physiological attributes, leaf nutrient contents, nodule-nitrogen and leghemoglobin content were studied at 60, 90 and 120 days after sowing (DAS), photosynthesis and other related parameters were measured at 90 DAS and yield and quality attributes were recorded at harvest (150 DAS). Nitrate reductase and carbonic anhydrate activities, leaf-N, -P, -K and -Ca contents and nodule-nitrogen and leghemoglobin contents reached the maximum extent at 60 DAS. At 90 and 120 DAS, the values decreased significantly. Chlorophyll content, carotenoids content, and photosynthesis were at maximum level at 90 DAS. At various growth stages, phosphorus application at 75 mg P kg−1 soil resulted in maximum amelioration of most of the parameters studied. It increased the seed-yield by 38.3%, seed-protein content by 14.9% and seed-carbohydrate content by 5.0%, relative to the control. It was concluded that there was a hidden hunger of hyacinth bean for phosphorus owing to soil-phosphorus deficiency that was ameliorated effectively by its basal dressing at 75 mg P kg−1 soil.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号