首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   2篇
林业   14篇
农学   9篇
基础科学   1篇
  18篇
综合类   14篇
农作物   4篇
水产渔业   1篇
畜牧兽医   31篇
园艺   2篇
植物保护   10篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1943年   1篇
  1941年   1篇
排序方式: 共有104条查询结果,搜索用时 139 毫秒
31.
Wood formation and the anatomical characteristics of tree-rings play a decisive role in plant performance and survival due to the importance of water transport. Saplings may be especially vulnerable to water stress; however, the level of water stress that they can endure still remains largely unexamined. Thus, the general objective of our research is to determine the plasticity of wood formation in Pinus halepensis saplings. We evaluated cambial activity, xylem growth ring formation and its anatomical characteristics in different experimental irrigation conditions and tested for its influence on the success rate of sapling establishment. Our results demonstrate a high phenological plasticity in wood formation with juvenile P. halepensis saplings in relation to water availability. Dry conditions during spring and summer strongly limit their cambial activity, which is suggested to be linked to sapling survival during summer. Width and anatomical characteristics of tree-rings differ in saplings exposed to different irrigation conditions. Our results suggest that increasing water stress during spring and summer periods, as predicted by future climate change scenarios, may seriously affect the success of both natural regeneration and reforestation of P. halepensis, and this could severely modify potential distribution of the species.  相似文献   
32.
The semen evaluation techniques used in most commercial artificial insemination centers, which includes sperm motility and morphology measurements, provides a very conservative estimate of the relative fertility of individual boars. As well, differences in relative boar fertility are masked by the widespread use of pooled semen for commercial artificial insemination (AI) in many countries. Furthermore, the relatively high sperm numbers used in commercial AI practice usually compensate for reduced fertility, as can be seen in some boars when lower numbers of sperm are used for AI. The increased efficiency of pork production should involve enhanced use of boars with strong reproductive efficiency and the highest genetic merit for important production traits. Given that the current measures of semen quality are not always indicative of fertility and reproductive performance in boars, accurate and predictive genetic and protein markers are still needed. Recently, significant efforts have been made to identify reliable markers that allow for the identification and exclusion of sires with reduced reproductive efficiency. This paper reviews the current status of proteomic and genomic markers of fertility in boars in relation to other livestock species.  相似文献   
33.
Genetic Resources and Crop Evolution - Comfrey Symphytum officinale L. (true comfrey) and S.?×?uplandicum Nyman (a hybrid between S. asperum Lepech?×?S. officinale...  相似文献   
34.
Relationship between soil CO2 concentrations and forest-floor CO2 effluxes   总被引:3,自引:2,他引:3  
To better understand the biotic and abiotic factors that control soil CO2 efflux, we compared seasonal and diurnal variations in simultaneously measured forest-floor CO2 effluxes and soil CO2 concentration profiles in a 54-year-old Douglas fir forest on the east coast of Vancouver Island. We used small solid-state infrared CO2 sensors for long-term continuous real-time measurement of CO2 concentrations at different depths, and measured half-hourly soil CO2 effluxes with an automated non-steady-state chamber. We describe a simple steady-state method to measure CO2 diffusivity in undisturbed soil cores. The method accounts for the CO2 production in the soil and uses an analytical solution to the diffusion equation. The diffusivity was related to air-filled porosity by a power law function, which was independent of soil depth. CO2 concentration at all depths increased with increase in soil temperature, likely due to a rise in CO2 production, and with increase in soil water content due to decreased diffusivity or increased CO2 production or both. It also increased with soil depth reaching almost 10 mmol mol−1 at the 50-cm depth. Annually, soil CO2 efflux was best described by an exponential function of soil temperature at the 5-cm depth, with the reference efflux at 10 °C (F10) of 2.6 μmol m−2 s−1 and the Q10 of 3.7. No evidence of displacement of CO2-rich soil air with rain was observed.Effluxes calculated from soil CO2 concentration gradients near the surface closely agreed with the measured effluxes. Calculations indicated that more than 75% of the soil CO2 efflux originated in the top 20 cm soil. Calculated CO2 production varied with soil temperature, soil water content and season, and when scaled to 10 °C also showed some diurnal variation. Soil CO2 efflux and concentrations as well as soil temperature at the 5-cm depth varied in phase. Changes in CO2 storage in the 0–50 cm soil layer were an order of magnitude smaller than measured effluxes. Soil CO2 efflux was proportional to CO2 concentration at the 50-cm depth with the slope determined by soil water content, which was consistent with a simple steady-state analytical model of diffusive transport of CO2 in the soil. The latter proved successful in calculating effluxes during 2004.  相似文献   
35.
Microcosm studies were employed to determine the subsurface biodegradation rates of phenol, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP). Soil samples were taken from sites in Pennsylvania and Virginia from depths up to 31 m, and all samples contained significant microbial populations. Soil from both sites readily biodegraded all five compounds. Biodegradation rates increased as initial concentrations increased, and all biodegradation rates appeared to follow first-order kinetics with regard to the initial compound concentrations. Biodegradation rates for the five compounds followed the order: phenol = 2-CP > 2,4,6-TCP > 2,4-DCP. PCP was degraded more slowly than phenol or 2-CP, but similarly to 2,4,6-TCP and 2,4-DCP. Different soils exhibited different degradation rates, and the soil characteristics that may influence the rates are discussed. The data suggest that biological degradation is a significant attenuation mechanism for phenol and its chlorinated derivatives in subsurfaces saturated and unsaturated zones.  相似文献   
36.
Journal of Plant Diseases and Protection - Leaf mould (Passalora fulva) has emerged as an important disease of greenhouse-growing tomato crops in Croatia during the last decade. In order to...  相似文献   
37.
38.
39.
Oregano possesses high antioxidant activity and could therefore be used to enhance oxidative stability of eggs high in omega3 fatty acids. In this study, 20 female quails were fed a diet containing 4% linseed oil. They were divided into two groups, one receiving oregano, and the other grass meal as control (2% respectively). Cholesterol oxidation products were analysed in fresh eggs, in stored eggs and in the livers. Trolox equivalent antioxidative capacity of plasma was measured. No significant differences were seen between the groups.  相似文献   
40.

Purpose

Biochars are a by-product of the biofuel processing of lignocellulosic and manure feedstocks. Because biochars contain an assemblage of organic and inorganic compounds, they can be used as an amendment for C sequestration and soil quality improvement. However, not all biochars are viable soil amendments; this is because their physical and chemical properties vary due to feedstock elemental composition, biofuel processing, and particle size differences. Biochar could deliver a more effective service as a soil amendment if its chemistry was designed ex ante with characteristics that target specific soil quality issues. In this study, we demonstrate how biochars can be designed with relevant properties as successful soil amendments through feedstock selection, pyrolysis conditions, and particle size choices.

Materials and methods

Biochars were produced by pyrolysis of parent lignocellulosic feedstock sources—peanut hull (PH; Archis hypogaea), pecan shell (PS; Carya illinoensis), switchgrass (SG; Panicum virgatum), pine chips (PC; Pinus taeda), hardwood wastes (wood), and poultry litter manure (PL; Gallus domesticus), as well as blends of these feedstocks at temperatures ranging from 250 to 700 °C. Additionally, blended feedstocks were made into pellets (>2 mm) prior to pyrolysis at 350 °C. Dust-sized (<0.42 mm) biochar was obtained through grinding of pelletized biochars. After chemical characterization, the biochars were evaluated as fertility amendments in a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult) during two different pot incubation experiments.

Results and discussion

PL biochars were alkaline and enriched in N and P, whereas biochar from lignocellulosic feedstocks exhibited mixed pH and nutrient contents. Blending PL with PC resulted in lower biochar pH values and nutrient contents. In pot experiment 1, most biochars significantly (P?<?0.05) raised soil pH, soil organic carbon, cation exchange capacity, and Mehlich 1 extractable P and K. PL biochar added at 20 g?kg?1 resulted in excessive soil P concentrations (393 to 714 mg?kg?1) and leachate enriched with dissolved phosphorus (DP, 22 to 70 mg?L?1). In pot experiment 2, blended and pelletized PL with PC feedstock reduced soil pH and extractable soil P and K concentrations compared to pot experiment 1. Water leachate DP concentrations were significantly (P?<?0.05) reduced by pelletized biochar blends.

Conclusions

Short-term laboratory pot experiments revealed that biochars can have different impacts at modifying soil quality characteristics. Keying on these results allowed for creating designer biochars to address specific soil quality limitations. In the process of manufacturing designer biochars, first, it is important to know what soil quality characteristics are in need of change. Second, choices between feedstocks, blends of these feedstocks, and their accompanying particle sizes can be made prior to pyrolysis to create biochars tailored for addressing specific soil quality improvements. Utilization of these principles should allow for effective service of the designed biochar as a soil amendment while minimizing unwanted ex facto soil quality changes and environmental effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号