首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
林业   3篇
农学   6篇
  37篇
综合类   2篇
农作物   3篇
水产渔业   8篇
畜牧兽医   26篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有85条查询结果,搜索用时 171 毫秒
81.
Hexavalent chromium [Cr(VI)] is highly toxic, teratogenic and carcinogenic to man and other animals. Some bacterial species have the ability to reduce Cr(VI) to a stable speciation state of trivalent chromium [Cr(III)], which is insoluble and comparatively less toxic. Therefore, the reduction of Cr(VI) thus provides potential as a means for environmental bioremediation of Cr(VI) pollution. In the present study bacteria isolated from chromium and diesel contaminated sites were found to have the ability to rapidly reduce highly toxic concentrations of Cr(VI) to Cr(III) when grown in minimal medium supplemented with glucose as the sole carbon source. Partial chromate reductase gene sequences were retrieved after PCR amplification of genomic DNA extracted from three Gram positive isolates which were highly similar (>99% sequence similarity) to chromate reductase genes found in Gram negative bacteria, more specifically those identified from Escherichia coli and Shigella spp. whole-genome studies. The isolated bacteria were putatively identified by 16S rRNA gene sequencing as Arthrobacter aurescens strain MM10, Bacillus atrophaeus strain MM20, and Rhodococcus erythropolis strain MM30.  相似文献   
82.
The presence of alpha emitting radionuclides in the environment assumes importance since they are found to be carcinogenic. This paper reports the results of an exhaustive and systematic measurement of alpha radioactivity using solid state nuclear track detector (SSNTD) in drinking water in different parts of India covering the entire Ganges Basin – West Bengal, Bihar and Uttar Pradesh where arsenic contamination is severe. The alpha activity in the samples was found in the range of 8 to 800 Bq/l in West Bengal, 90 to 1,000 Bq/l in Uttar Pradesh and 60 to 1,000 Bq/l in Bihar – much higher alpha activity value than MCL value given by US EPA. The concentration of alpha activity has a positive correlation with that of arsenic.  相似文献   
83.
Rising carbon dioxide (CO2) concentration causes fertilization effects resulting in enhanced crop biomass and yields and thus likely enhances nutrient demand of plants. Hence, this field study was carried out to investigate the effects of elevated CO2 and N on biomass yield, nutrient partitioning, and uptake of major nutrients by soybean (Glycine max L.) using open‐top chambers (OTCs) of 4 m × 4 m size. Soybean was grown in OTCs under two CO2 [ambient and elevated (535 ± 36.9 mg L?1)] and four N levels during July to October 2016. The four N levels were N0, N50, N100, and N150 referring to 0, 50, 100, and 150% recommended dose of N. Both CO2 and N significantly affected biomass and grain yield, though the interaction was non‐significant. CO2 enrichment produced 30–65% higher biomass and 26–59% higher grain yield under various N levels. As compared to the optimum N application (N100), the CO2‐mediated increment in biomass yield decreased with either lower or higher N application, with the response being lowest at N150. As compared to ambient concentration, elevated CO2 resulted in significant reduction of seed P concentration at all N application levels but at N150, an opposite trend was observed. The decrease in seed P was maximum at N0 and N50 (7–9%) and by 3% at N100, whereas there was a gain of 7.5% at N150. The seed N and K concentrations were not affected either by CO2 or N application. Total N, P, and K uptake at harvest were significantly affected by CO2 and N, but not by CO2 × N interaction. Elevated CO2 resulted higher uptake of N by 18–61%, P by 23–62%, and K by 22–62% under various N treatments.  相似文献   
84.
The suitability of seven chemical extractants was evaluated on 24 Indian coastal soils for prediction of plant-available potassium (K) to rice (Oryza sativa L. var. NC 492) grown in modified Neubauer technique. Average amounts of soil K extracted were in descending order: 0.5 M NaHCO3 > neutral 1 N NH4OAc > 0.02 M CaCl2 > Bray and Kurtz No.1 > 1 N HNO3 > 0.1 N HNO3 > distilled water. The highest simple correlation with plant K uptake was obtained with 0.1 N HNO3-K (r = 0.848) and lowest with CaCl2-K (r = 0.805). Predictive models were developed using plant K uptake as the dependent variable and extractable soil K, sand, silt, soil pH, and electrical conductivity as the independent variables. Based on the final R2 and ease of measurement, distilled water, 1 N NH4OAc, and 0.1 N HNO3 models were the best predictors of plant-available K in coastal soils when used along with sand or soil pH.  相似文献   
85.
The effectiveness of eight chemical extraction methods was evaluated on 15 Indian soils for the prediction of plant-available potassium (K+) to Sudan grass (Sorghum vulgare var. sudanensis) grown in modified Neubauer technique. Average amounts of soil K+ extracted were in descending order: Morgan’s reagent > 0.5 M sodium bicarbonate (NaHCO3) > neutral 1N ammonium acetate (NH4OAc) > 1N nitric acid (HNO3) > 0.02 M calcium chloride (CaCl2) > 0.1N HNO3 > Bray and Kurtz No.1> distilled water. The highest simple correlation with plant K+ uptake was obtained with NH4OAc-K+ (r = 0.866**) and the lowest with CaCl2-K+ (r = 0.45*). To develop the predictive models using stepwise regression, plant K+ uptake was used as the dependent variable and the extractable soil K+, pH, sand, silt and organic carbon (C) contents as the independent variables. Based on the final R2, the NH4OAc model was found to be the best predictor of plant-available K+ in the soils when used along with sand and organic C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号