首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  9篇
综合类   1篇
农作物   1篇
畜牧兽医   1篇
植物保护   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
This study focuses on the characterization of four bacterial isolates from heavy metal-polluted rhizosphere in order to examine their plant growth promoting (PGP) activity. The PGP activity on the canola (Brassica napus) of the strains which showed cadmium resistance and multiple PGP traits was assessed in the presence and in the absence of Cd2+. The strains, Pseudomonas tolaasii ACC23, Pseudomonas fluorescens ACC9, Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14 showed 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. They also synthesized ACCD enzyme in vitro when 0.4 mM Cd2+ was added to the growth medium. The presence of the metal, however, reduced the ACCD activity in Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14, while it did not affect the ACCD activity of P. tolaasii ACC23 and P. fluorescens ACC9. ACC9 and ACC23 produced indole acetic acid (IAA) and siderophores, while ACC14 produced only IAA. IAA and siderophores were produced more actively under Cd-stress.Root elongation assays conducted on B. napus under gnotobiotic conditions demonstrated increases (from 34% up to 97%) in root elongation of inoculated canola seedlings compared to the control plants. Subsequently, the effect of inoculation with these strains on growth and uptake of Cd2+ in roots and shoots of canola was studied in pot experiments using Cd-free and Cd-treated (15 μg Cd2+ g?1 dw) soil. Inoculation with P. tolaasii ACC23, P. fluorescens ACC9 and Mycobacterium sp. ACC14 promoted the growth of plants at concentrations of 0 and 15 μg Cd2+ g?1 soil. The maximum growth was observed in the plants inoculated with P. tolaasii ACC23. The strains did not influence the specific accumulation of cadmium in the root and shoot systems, but all increased the plant biomass and consequently the total cadmium accumulation.The present observations showed that the bacterial strains used in this study protect the plants against the inhibitory effects of cadmium, probably due to the production of IAA, siderophores and ACCD activity.  相似文献   
12.
13.
In the last decades, research has focused on the capabilities of microbes to secrete exopolysaccharides (EPS), because these polymers differ from the commercial ones derived essentially from plants or algae in their numerous valuable qualities. These biopolymers have emerged as new polymeric materials with novel and unique physical characteristics that have found extensive applications. In marine microorganisms the produced EPS provide an instrument to survive in adverse conditions: They are found to envelope the cells by allowing the entrapment of nutrients or the adhesion to solid substrates. Even if the processes of synthesis and release of exopolysaccharides request high-energy investments for the bacterium, these biopolymers permit resistance under extreme environmental conditions. Marine bacteria like Bacillus, Halomonas, Planococcus, Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, Rhodococcus, Zoogloea but also Archaea as Haloferax and Thermococcus are here described as EPS producers underlining biopolymer hyperproduction, related fermentation strategies including the effects of the chemical composition of the media, the physical parameters of the growth conditions and the genetic and predicted experimental design tools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号