首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   23篇
农学   38篇
基础科学   5篇
  2篇
综合类   32篇
农作物   5篇
园艺   5篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   13篇
  2004年   6篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   7篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1963年   1篇
排序方式: 共有87条查询结果,搜索用时 18 毫秒
71.
普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定   总被引:10,自引:1,他引:10  
在硬粒小麦-簇毛麦双二倍体(TH3)/4×Wan7107的幼胚培养及花药培养后代中选育出普通小麦-簇毛麦抗白粉病易位系Pm97033等。利用白粉病抗性鉴定、细胞遗传学分析、生化标记、分子原位杂交等手段,鉴定出该材料为6DL/6VS臂间易位系。其根尖细胞染色体数为42,花粉母细胞减数分裂中期Ⅰ染色体构型均为21Ⅱ。它与农艺亲本Wan7107及6D/6V异代换系96N621-3-7-3测交F#-1的PMCsMⅠ染色体构型均为21Ⅱ,频率分别为92.5%和79.4%。与中国春6A、6B、6D重双端体测交F#-1的PMCsMⅠ染色体构型分别为21Ⅱ+1个异型二价体(tIt),21Ⅱ+1个异型二价体(tIt)及20Ⅱ+1个异型二价体(It)+1个端体(t),出现频率分别为89.4%、85.4%和94.3%。生化分析结果表明,它缺失簇毛麦6VL上的谷草转氨酶GOT-V#-2位点,而具有6VS上的醇溶蛋白Gli-V#-2位点。分子原位杂交结果表明,Pm97033、Pm97034和Pm97035均为纯合的臂间易位系。易位系及其测交F#-1均对白粉病表现免疫。  相似文献   
72.
小麦转TPS基因植株的获得及其初步功能鉴定   总被引:6,自引:0,他引:6  
为了探索利用基因工程改良小麦抗旱性和耐盐性的途径,通过基因枪法将具有抗旱和耐盐碱功能的海藻糖合酶(TPS)基因导入普通小麦品种CB9945,获得了转TPS基因的小麦植株,对T0代植株进行了PCR检测,对T2代植株进行了叶片涂抹除草剂检测并进一步进行了验证,鉴定出15个转基因株系.采用模拟抗旱、耐盐环境,对15个转基因株系进行了初步功能鉴定,发现转TPS基因小麦植株的抗旱、耐盐能力得到了一定程度的提高.  相似文献   
73.
抗根腐病的转GmPGIP3基因小麦扬麦18的获得与鉴定   总被引:4,自引:1,他引:3  
GmPGIP3是大豆的一种多聚半乳糖醛酸酶抑制蛋白, 能够特异性地抑制部分病原真菌内切多聚半乳糖醛酸活性, 从而减弱病原菌对植株的侵害。利用基因重组技术构建了GmPGIP3基因的单子叶植物表达载体pA25-GmPGIP3, 通过基因枪介导法将pA25-GmPGIP3转入小麦品种扬麦18中。对转GmPGIP3基因扬麦18的T0至T2代植株进行PCR、Southern杂交、半定量RT-PCR和荧光定量Q-RT-PCR分析, 并对根腐病进行抗性鉴定。结果表明, GmPGIP3已转入扬麦18, 并在转基因小麦中遗传、转录和表达;比受体材料相比, 5个GmPGIP3过表达的转基因小麦株系对根腐病的抗性有明显提高。  相似文献   
74.
导读:紫苏叶在我国常被用作中药,在日本多用于料理,是餐饮业中不可缺少的佐料,在江阴市已种植多年,是江阴市出口日本的主要蔬菜,为江阴农业的出口创汇发挥了积极的作用。生产中应严格按照生产标准进行选地、选种、田间管理和病害防治,以期产品均能达出口标准。本文总结了江阴市紫苏叶标准化生产技术,以供参考。  相似文献   
75.
申勋业  徐惠君  佟勇 《农机化研究》2007,(7):118-119,139
介绍了单螺杆啤酒辅料挤压蒸煮设备的计算机智能控制系统.该系统以工控机为核心,应用CP5611卡与西门子S7-200的PPI接口实现数据采集和控制信号发送,应用FameView实现上位机监控界面的显示.应用结果表明,该系统满足设备要求,为单螺杆挤压机的研制提供了参考依据.  相似文献   
76.
共转化法剔除转基因小麦中的bar基因   总被引:19,自引:3,他引:19  
利用PCR检测了268株转小麦黄花叶病病毒复制酶基因T3代植株,初步筛选出只含有功能基因(WYMV-Nib8基因)而不含有筛选标记基因(bar基因)的转基因小麦植株28棵,为转基因小麦的安全性种植提供了保障。同时对无标记基因的转基因植株进行了叶片涂抹除草剂验证,探讨了叶片涂抹除草剂结合目的基因PCR检测筛选无选择标记转基因植株  相似文献   
77.
全蚀病和根腐病是小麦(Triticum aestivum)重要的土传真菌病害。PgPGIP1是人参(Panax ginseng)的一种多聚半乳糖醛酸酶抑制蛋白,可以抑制部分病原真菌分泌的多聚半乳糖醛酸酶的活性。本研究人工合成了PgPGIP1基因,并构建PgPGIP1基因的单子叶植物表达载体pA25-PgPGIP1,通过基因枪介导法将其转入小麦品种扬麦18中。对转PgPGIP1基因的T0至T4代植株进行PCR、RT-PCR和Q-RT-PCR分析,并对其全蚀病和根腐病抗性进行鉴定。结果表明,PgPGIP1基因能够在4个转基因小麦株系中遗传、转录与表达。与未转基因的小麦扬麦18相比,4个转基因小麦株系对全蚀病与根腐病的抗性明显提高,说明PgPGIP1表达增强了转基因小麦对全蚀病与根腐病的抗性。  相似文献   
78.
小麦大龄幼胚再生性能改进与农杆菌转化   总被引:1,自引:0,他引:1  
 【目的】小麦幼胚再生率与幼胚大小关系密切,改进小麦大龄幼胚再生性能促进小麦转基因研究。【方法】以18个普通小麦基因型和5个硬粒小麦基因型为材料,对其开花授粉后15—17 d的大龄幼胚进行破碎处理、组织培养和农杆菌转化,对转化后的幼胚组织和获得的抗性再生植株分别进行组织化学染色检测和PCR检测。【结果】大龄幼胚培养2 d后破碎处理的再生率为18.2%,显著高于完整胚对照(.7%),培养2 d后进行破碎处理的再生效果高于4和6 d后破碎处理;不同基因型小麦大龄幼胚破碎处理后再生率为16.9%—46.7%,其中,Bobwhite和中8423大龄幼胚再生率达到了40%以上;大龄幼胚破碎后在弱光条件下培养,再生率进一步提高,较对照(完整胚黑暗培养)提高5.4%—47.4%;农杆菌侵染后GUS瞬时表达率为0—76.7%,其中科农199高达76.7%,其次为Verry(64.4%)和Alondra(47.2%);经PCR检测,农杆菌转化小麦大龄破碎幼胚获得了候选转基因植株。【结论】破碎处理和弱光培养显著提高了小麦大龄幼胚再生率,比对照提高5—10倍;科农199、Verry和Alondra大龄幼胚对农杆菌侵染比较敏感,适宜作为农杆菌转化的受体材料;农杆菌转化小麦大龄幼胚可以获得转基因植株。  相似文献   
79.
植物多基因转化研究进展   总被引:2,自引:0,他引:2  
随着植物基因工程和分子生物学研究的深入,植物遗传改良手段不断创新。在植物转基因方面,单个目的基因的转化已经不足以满足植物改良的需要,尤其是对一些代谢途径或数量性状的遗传修饰,多基因转化研究应运而生,并迅速发展。以烟草、水稻、玉米 等几种高等植物为例,概述了利用农杆菌介导法和基因枪介导法开展多基因转化的进展,以及存在的问题,展望了今后的发展方向,可为小麦等主要农作物多基因转化提供参考,促进转基因作物新品种培育。  相似文献   
80.
几个小麦基因型苗期抗旱性鉴定及相关生理指标分析   总被引:5,自引:1,他引:4  
为了明确小麦抗旱性与果聚糖含量和叶绿素荧光特性间的关系,选用扬麦6号、扬麦12、新春9号、Bobwhite、宁春27、CB9945、03S58、8139等8个小麦基因型,从分蘖期开始进行干旱胁迫处理,每隔一定时期取叶片测定果聚糖含量,36 d后复水,统计存活率,抽穗期测定旗叶叶绿素荧光参数.结果表明,扬麦6号干旱胁迫处理后植株存活率(60.71%)显著高于其他几个基因型(1.19%~28.57%),表现出较强的抗旱性;干旱胁迫期间,扬麦6号叶片中果聚糖舍量明显增加,而其他基因型叶片中果聚糖含量几乎没有变化;扬麦6号PSⅡ原初光能转换效率(Fv,/Fm)最高(O.7977),显著高于03S58(0.6932)、Bobwhite(0.6879)和宁春27号(0.6285);PSⅡ潜在活性(Fv/Fo)也以扬麦6号最高(3.9484),显著高于Bobwhite(2.7303)、新春9号(2.7187)、03S58(2.4034)和宁春27号(2.1619).这说明小麦苗期抗旱性与果聚糖含量和叶绿素荧光特性间有一定的关系,抗旱性强的基因型干旱胁迫期间果聚糖含量、叶绿素荧光参数Fv/Fm均较高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号