首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
林业   1篇
农学   1篇
基础科学   2篇
  14篇
综合类   4篇
农作物   9篇
水产渔业   13篇
畜牧兽医   30篇
园艺   2篇
植物保护   14篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1988年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
71.
The effects of dietary protein‐energy levels on the growth rate, proximate composition and production were examined in Nile tilapia, Oreochromis niloticus, at two starting weights (22.9 and 39.8 g) reared in concrete ponds for 180 days. The highest weight gain (183.1 g) was obtained with fish fed a 30% protein and 10.5 kJ g?1 diet for the small initial size and 180.2 g for a diet containing 25% protein and 12.6 kJ g?1 for the large initial size. Dressed yields (edible mass) and fillets increased to 56.9% and 52.5% in fish fed diet with 25% protein and 10.5 kJ g?1 at the initial size of 22.9 g, while fish started at 39.8 g exhibited the best values (56.5% and 52.1%) when fed the 30% protein and 10.5 kJ g?1 diet. Proximate composition of soft tissue (wet weight basis) in small fish was significantly influenced by dietary protein‐energy levels. Protein was 26.1±0.3% in fish fed the high protein (30%) and low energy (10.5 kJ g?1 diet), while lipid content was 6.4±0.3% at diet containing 20% protein and 14.7 kJ g?1 diet. Large initial size fish fed the diet with 25% protein and 14.7 kJ g?1 had the highest body protein (32.0±0.4%) and lowest lipid content (2.2±0.3%). Feed conversion ratio (FCR) and protein efficiency ratio varied with different dietary protein‐energy levels and initial fish sizes. Feed conversion ratio increased with increasing protein and decreasing energy level in the diet, and values in small fish were higher than values in large fish. Protein efficiency ratio decreased with increasing dietary protein level and decreasing energy level. The maximum total production (7.6 tons feddan?1) was with dietary high protein (30%) and low energy (10.5 kJ g?1) for small‐sized fish, while large initial fish had the highest production (3.7 tons feddan?1) when fed the 25% protein and 12.6 kJ g?1 diet energy. Starting with 22.9 g fish was more advantageous than the initial size of 39.8 g for rearing Nile tilapia. Small fish required a high‐protein and low‐energy diet, whereas large fish required a low‐protein and high‐energy diet to achieve highest production.  相似文献   
72.
Hexane and ethyl acetate phases of the methanol extract of Macaranga monandra showed fungal growth inhibition of Colletotrichum acutatum, C. fragariae and C. gloeosporioides, Fusarium oxysporum, Botrytis cinerea, Phomopsis obscurans, and P. viticola. Bioassay-guided fractionation led to the isolation of two active clerodane-type diterpenes that were elucidated by spectroscopic methods (1D-, 2D-NMR, and MS) as kolavenic acid and 2-oxo-kolavenic acid. A 96-well microbioassay revealed that kolavenic acid and 2-oxo-kolavenic acid produced moderate growth inhibition in Phomopsis viticola and Botrytis cinerea.  相似文献   
73.
This study aimed to investigate the replacement value of half time grazing of wheat stubbles by vetch, which had been cropped under the context of conservation agriculture (CA). Three grazing treatments were evaluated on Barbarine lambs (initial BW 18 ± 1.42 kg). Treatment 1 consists of 6-hr grazing on dried vetch only (V). For treatment 2, the sheep were grazing 3 hr on wheat stubbles in morning and 3 hr on dried vetch in the afternoon (VWS). Treatment 3 consists of 6-hr grazing of wheat stubbles only (WS). At grain maturity stage, biomass yield of vetch averaged 7 tons DM/ha allowing a grazing period of 2 consecutive months. Along this period, vetch conserved its pods indehiscent. Biomass and nutritive value of vetch and wheat stubbles were decreasing from the start to the end of the grazing period. Residual biomass was higher in vetch and wheat stubble assigned to treatment VWS. WS lambs spent more time on walking and standing, while V and VWS lambs allocated more time on biomass uptake. The DM, OM and CP intakes were higher in animal grazing vetch alone or combined to wheat stubble. Rumen fermentation parameters (pH, ammonia nitrogen concentration and protozoa count) were not affected (p > .05) by any of the three treatments. The average daily gain of lambs on V and VWS lambs was three times greater (p < .05) than that of WS lambs (164, 152 and 49.5 g respectively). Cold carcass yield averaged 444, 428 and 388 g/ kg for lambs assigned to V, VWS and WS treatments respectively. It is concluded that grazing vetch alone or combined with WS increased substantially the growth performance and carcass yield of lambs compared with WS grazing only. Therefore, dried vetch grazing could be a solution to make possible mulching and biomass uptake by sheep under the context of CA.  相似文献   
74.
The potential for degradation of atrazine or isoproturon in the unsaturated zone of two boreholes was studied under laboratory conditions. Intact and uncontaminated samples were obtained from regular depths of 0–16.45 m and 0–9 m using a percussion coring technique. The results showed that the deep unsaturated zone contained micro-organisms capable of degrading atrazine or isoproturon. The rate of degradation was much faster in surface soil than in most unsaturated materials of both boreholes. The amount of atrazine remaining six months after incubation also varied between the two boreholes. A relatively small amount of atrazine was lost from sterilised samples, suggesting a significant role for microbial degradation. The addition of nutrient and energy sources into materials of low degradation capacity did not enhance the degradation of atrazine. Degradation rate was more related to the presence of a competent microbial population rather than to the presence of indigenous organic matter. However, the competent micro-organisms are more likely to be present when the organic matter content is high. The type and activity of these micro-organisms and their physical environment may have considerable influence on atrazine degradation and are likely to be responsible for much of the variation in the rate of degradation observed at different depths. © 1999 Society of Chemical Industry  相似文献   
75.
The optimum water temperature required for the normal growth of Nile tilapia is 25–30°C. In this study, tilapia was reared under suboptimal temperature (21.50 ± 1.50°C) and fed four diets with fish oil (FO), corn oil (CO), sunflower oil (SFO) and linseed oil (LnO) for 8 weeks. The results revealed improved final weight, average daily gain and intestinal amylase activity in the LnO group compared to FO and SFO groups (p < .05). The feed intake was increased significantly in FO and LnO groups compared to CO and SFO groups, while the feed conversion ratio was increased in the FO group (p < .05). The CO, SFO and LnO diets resulted in higher carcass lipids than fish fed FO, while CO decreased the ash content (p < .05). The growth hormone was significantly lowered by LnO, followed by SFO, while CO improved the serum alkaline phosphatase activity (p < .05). Glutathione peroxidase enhanced in fish fed SFO, while the lowest activities were recorded in fish fed FO (p < .05). Total superoxide dismutase was significantly elevated by CO and LnO when compared with fish fed FO and SFO (p < .05). Substituting FO with vegetable oils had normal intestinal and liver histological appearance. It could be concluded that substituting FO with either CO or LnO for Nile tilapia could maintain the normal growth performance and feed utilization with enhanced antioxidant capacity under suboptimal temperature.  相似文献   
76.
A 45‐day feeding trial was conducted to study the effect of replacing dietary fish meal (FM) with a tuna by‐product meal (TBM) on the growth, feed efficiency, carcass composition and stress oxidative status of juvenile Nile tilapia, Oreochromis niloticus L.). Triplicate groups of fish (2.21 ± 0.01 g) were fed on four iso‐nitrogenous and iso‐energetic diets. The control diet (A0) used FM as the sole source of animal protein. In the other three diets (A10–A30), 33%–100% of FM was substituted by TBM at 10% increments. There were no significant differences (P>0.05) in growth performance among fish fed on diets A0, A10 and A20. Fish fed these experimental diets (i.e., A0, A10 and A20) showed significantly (P<0.05) better daily mass gain, specific growth rate and protein efficiency ratio than those fed on diet A30. Feed conversion ratio increased with increasing TBM content, but only the value found in fish fed on diet A30 differed significantly (P<0.05) from the other treatments. The fish accumulated increasing quantities of lipids and decreasing levels of ash in their carcasses with increasing levels of dietary TBM. At the end of the experimental period, a significant increase (P<0.001) in catalase and glutathione S‐transferase activities was seen only in groups fed on diet A30. Similarly, a significant enhancement in glutathione peroxidase and superoxide dismutase activities was observed in groups fed on diets A20 and A30 compared with the other groups. The results show that this product can be included up to 20% in practical Nile tilapia diets without any detrimental effects.  相似文献   
77.
A European-wide project has been undertaken to establish the potential for dissipation of atrazine in the soil subsurface environment. Samples were obtained, avoiding contamination, in four countries (Belgium, Greece, Hungary and UK) and laboratory studies carried out. In order to make comparisons between results from each laboratory, a ring experiment was carried out using common methodology for sampling, extraction and analytical techniques. Subsurface materials from each country were distributed to the other countries. Atrazine dissipation was determined in each country for all materials under the same laboratory conditions. The results of this comparative study showed generally good agreement between all laboratories. Significant potential microbiological dissipation was detected in certain samples. Where differences occurred between laboratories this was attributed to small, spatially heterogeneous microbial populations in the subsurface materials. © 1997 SCI.  相似文献   
78.
The tumor microenvironment is a nutrient-deficient region that alters the cancer cell phenotype to aggravate cancer pathology. The ability of cancer cells to tolerate nutrient starvation is referred to as austerity. Compounds that preferentially target cancer cells growing under nutrient-deficient conditions are being employed in anti-austerity approaches in anticancer drug discovery. Therefore, in this study, we investigated physcion (1) and 2-(2′,3-epoxy-1′,3′,5′-heptatrienyl)-6-hydroxy-5-(3-methyl-2-butenyl) benzaldehyde (2) obtained from a culture extract of the marine-derived fungus Aspergillus species (sp.), which were isolated from an unidentified marine sponge, as anti-austerity agents. The chemical structures of 1 and 2 were determined via spectroscopic analysis and comparison with authentic spectral data. Compounds 1 and 2 exhibited selective cytotoxicity against human pancreatic carcinoma PANC-1 cells cultured under glucose-deficient conditions, with IC50 values of 6.0 and 1.7 µM, respectively. Compound 2 showed higher selective growth-inhibitory activity (505-fold higher) under glucose-deficient conditions than under general culture conditions. Further analysis of the mechanism underlying the anti-austerity activity of compounds 1 and 2 against glucose-starved PANC-1 cells suggested that they inhibited the mitochondrial electron transport chain.  相似文献   
79.
80.
The aim of this work was to explore leaf characteristics underlining the difference in the sensitivity of pea cultivars (cv. Kelvedon, Douce and Lincoln) to Fe deficiency. Plants were grown in a greenhouse under controlled conditions in continuously aerated solution. Three treatments were used: 30 μM Fe (+Fe), 0 μM Fe (−Fe); direct deficiency and 30 μM Fe + 10 mM NaHCO3 (+Fe+Bic); indirect deficiency for 12 days. Growth parameters, iron status, potassium content, chlorophyll fluorescence and photosynthetic capacity were studied. Our results showed that Fe deficiency led to a significant decrease of chlorophyll index (SPAD readings) and bivalent iron content in all Pisum sativum cultivars. The lower reduction was observed in Fe-deficient plants of Kelvedon and Douce. In addition, shoot length and whole plant dry weight were not affected by Fe deficiency in the latter cultivars. Both tolerant cultivars showed higher accumulation of potassium content in their leaves compared with the sensitive one. Moreover, both chlorophyll fluorescence ratios (Fv/Fm and Fv/F0) were significantly decreased in all cultivars under both Fe deficiency treatments. The photosynthetic electron transport activity was reduced in the sensitive cultivar, especially in the absence of iron. The adverse effect of bicarbonate-induced Fe deficiency on the above mentioned parameters were more pronounced than that of the direct one. The capacity of both tolerant cultivars to preserve adequate chlorophyll synthesis, photosynthetic capacity and plant growth under iron-limiting conditions is related to the suitable nutrition of their leaves in ferrous iron, due to (at least partially) their higher potassium content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号