首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
林业   5篇
基础科学   1篇
  4篇
综合类   1篇
畜牧兽医   6篇
园艺   1篇
植物保护   3篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
21.
Soybean is a major source of oil and proteins worldwide. The demand for soybean has increased in Africa, driven by the growing feed industry for poultry, aquaculture and home consumption in the form of processed milk, baked beans and for blending with maize and wheat flour. Soybean, in addition to being a major source of cooking oil, is also used in other industrial processes such as in the production of paints and candle wax. The demand for soybean in Africa so far outweighs the supply, hence the deficit is mainly covered through imports of soybean products such as soybean meal. The area under soybean production has increased in response to the growing demand, a trend that is expected to continue in the coming years. As the production area increases, diseases and insect pests, declining soil fertility and other abiotic factors pose a major challenge. Soybean rust disease, caused by the fungus Phakopsora pachyrhizi, presents one of the major threats to soybean production in Africa due to its rapid spread as a result of the ease by which its spores are dispersed by the wind. Disease control by introducing resistant soybean varieties has been difficult due to the presence of different populations of the fungus that vary in pathogenicity, virulence and genetic composition. Improved understanding of the dynamics of rust ecology, epidemiology and population genetics will enhance the effectiveness of targeted interventions that, in turn, will safeguard soybean productivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号