首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   13篇
林业   17篇
农学   13篇
  24篇
综合类   4篇
农作物   10篇
水产渔业   31篇
畜牧兽医   54篇
园艺   5篇
植物保护   25篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   15篇
  2019年   16篇
  2018年   13篇
  2017年   7篇
  2016年   11篇
  2015年   3篇
  2014年   14篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   14篇
  2008年   8篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有183条查询结果,搜索用时 515 毫秒
31.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   
32.
33.
We characterized the pollination and fecundation times in soybean flowers and evaluated the effects of kinetin and calcium applications on physiological and productive traits of soybean plants during the reproductive stage. The anatomical study of flowers of eight soybean cultivars showed that fecundation occurred in closed flowers with visible petals, which presented embryo in the first cell divisions. These results indicate that fertilizers and growth regulation applications should be performed before flower opening, which is different from the current recommendation. Foliar applications of kinetin and calcium between the floral bud and full flowering stages did not affect carbon dioxide (CO2) assimilation, yield components and final yield. The results obtained in this research showed the lack of viability of foliar application of calcium and kinetin in order to increase pod set and number of seeds per plant in soybean crop.  相似文献   
34.
The objectives of this work were to evaluate the genetic variability of Meloidogyne enterolobii by molecular markers, and develop species‐specific molecular markers for application in detection. Sixteen M. enterolobii isolates from different geographical regions (Brazil and other countries) and hosts were used in this study. The identification and purification of the populations were carried out based on isoenzyme phenotype. The DNA amplification of the intergenic region (IGS) of the rDNA and of the region between the cytochrome oxidase subunit II (COII) and 16S rRNA genes (mtDNA) produced specific fragments of the expected size for this nematode, i.e. 780 and 705 bp, respectively. Intraspecific variability among the isolates was evaluated with three different neutral molecular markers: AFLP, ISSR and RAPD. The results showed a low level of diversity among the isolates tested, indicating that M. enterolobii is a genetically homogeneous root‐knot nematode species. The RAPD method allowed the identification of a species‐specific RAPD fragment for M. enterolobii. This fragment was cloned and sequenced, and from the sequence obtained, a set of primers was designed and tested. The amplification of a 520‐bp‐long fragment occurred only for the 16 isolates of M. enterolobii and not for the 10 other Meloidogyne species tested. In addition, positive detection was achieved in a single individual female, egg‐mass and second stage juvenile of this nematode. This SCAR species‐specific marker for M. enterolobii represents a new molecular tool to be used in the detection of this nematode from field samples and as a routine diagnostic test for quarantine devices .  相似文献   
35.
Seven root-knot nematodes (RKN), including Meloidogyne exigua, M. incognita, M. paranaensis, M. enterolobii, M. arabicida, M. izalcoensis and M. arenaria are major pathogens of coffee crop in the Americas. Species-specific primers for their identification have been developed for five of them and constitute a fast and reliable method of identification. Here we report a PCR-based assay for specific detection of M. arabicida and M. izalcoensis. Random Amplified Polymorphic DNA fragments specific for these two species were converted into sequence characterized amplified region (SCAR) markers. PCR amplification using the SCAR primers produced a specific fragment of 300 bp and 670 bp for M. arabicida and M. izalcoensis, respectively, which were absent in other coffee-associated Meloidogyne spp. tested. SCAR primers also allowed successful amplification of DNA from single second-stage juveniles (J2), males and females. In addition, these primers were able to unambiguously detect the target species in nematode suspensions extracted from soil and roots samples, in different isolates of the same species or when used in multiplex PCR reactions containing mixtures of species. These results demonstrated the effectiveness of these SCAR markers and their multiplex use with those previously developed for M. exigua, M. incognita, M. paranaensis, M. enterolobii and M. arenaria constitute an essential detection tool. This diagnostic kit will contribute for specific J2 identification of the major RKN infecting coffee from field samples in the Americas.  相似文献   
36.
37.
In the last three decades, Amazon tropical forests have experienced high rates of deforestation, both by clearing for agriculture and by logging. In this study, we use computer simulations to examine the potential effects of forest logging on genetic diversity and demographic recovery (basal area development) of four neotropical tree species over a time frame reflecting multiple logging events. The study species, Bagassa guianensis Aubl., Hymenaea courbaril L., Manilkara huberi (Ducke) Chevalier, and Symphonia globulifera L.f., are all taxa which are commonly exploited for timber in the Brazilian Amazon. The simulations were parameterized using empirical data from field studies in the Tapajós National Forest, Pará State, Brazil, including genotypes at microsatellite loci, demography, ecology and growth for each species. Eight scenarios, combining two different cutting cycles and two minimum cutting diameters, were examined for each of the four species. The scenarios represent the actual forest practices used in Brazil and French Guiana (cutting diameter 45 and 60 cm, and cutting cycle of 30 and 65 years, respectively). Logging scenarios were applied for six cutting cycles, and final genetic and demographic data were compared to baseline data from corresponding control scenarios. At the end of the simulated period the basal area was strongly reduced under all conditions in B. guianensis, H. courbaril, and M. huberi. In only two scenarios was a species able to recover its basal area following logging (S. globulifera with both 45- and 60-cm cutting diameters under a 65-year cutting cycle). In the logging scenarios, all species showed a loss of alleles and genotypes and an increased genetic distance (calculated between each population at the start and the end of the simulations). These effects were higher under the most intensive logging cycles (30 years, 45 cm). However, effective number of alleles, expected and observed heterozygosities, and the fixation index were little affected by the logging simulations. Over all, we conclude that, even under very optimistic conditions for growth and recruitment, current logging practices are not sustainable in terms of basal area. Our simulations show that different species respond differently to logging, both demographically and genetically. No single set of logging parameters can be applied to the forest as a whole. Rather, forest management practices must be species-specific, taking into account not only growth parameters but also ecological and reproductive variables, in order to move toward long-term forest sustainability.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号