首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   3篇
农学   13篇
  2篇
综合类   9篇
农作物   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   3篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有30条查询结果,搜索用时 640 毫秒
21.
活性污泥应用于农业前发酵处理过程中病原菌变化研究   总被引:2,自引:0,他引:2  
采用黑曲霉为发酵剂对活性污泥进行全程无公害处理并对各种病原菌的生长变化进行监测.结果表明病原菌总量在发酵过程中呈"马鞍型"变化.由于不同堆肥处理组合的C/N比及添加辅料的不同,导致各种病原菌的生长规律出现差异;采用黑曲霉处理城市活性污泥可使病原菌数目减少,但不能达到完全杀灭的目的;对发酵污泥进行200℃高温物理处理后,病原菌存活量为零.因而活性污泥在堆肥后必须经过高温物理处理才能达到安全化和资源化.  相似文献   
22.
盐胁迫对不同粒型花生品种种子吸水特性的影响   总被引:1,自引:0,他引:1  
选用不同粒型花生品种并设置0%、0.15%、0.30%、0.45%(m/V)不同盐胁迫浓度的盆栽试验,以探究盐胁迫下花生种子吸水速率变化情况及其与种子粒型间的关系。结果显示,供试各品种种子粒型大小HY36>HY25>JH13>HY20,以HY36的种子粒型较为整齐。各品种种子吸水速率均随吸水时间的延长而减慢,并随盐胁迫浓度的增加显著降低,各盐胁迫浓度下以HY20种子吸水率最小。种子粒型与吸水率和吸水速率间相关性分析表明,无论盐胁迫与否,大粒型品种种子质量与吸水率间均呈负相关关系;各盐胁迫浓度处理下,中粒型和小粒型品种种子质量越大其吸水速率越大。综合来看,0%和0.15%低盐浓度处理下,大粒型品种中质量较大的种子和小粒型品种较为浑圆饱满的种子吸水率相对较小;0.45%高盐浓度处理下,种子越细长其吸水率越大。非盐或低盐地区选用吸水率较小的种子便于节水,高盐环境下选用吸水率较大的相对细长的种子利于萌发。本试验结果为盐碱地花生选种和完善高产栽培技术等提供参考依据。  相似文献   
23.
适于冀中地区种植的高产花生品种筛选及其丰产性评价   总被引:1,自引:0,他引:1  
以豫花9327为对照品种,对黄淮海地区9个花生主要育成品种进行了丰产性比较,以筛选出适于冀中地区种植的高产花生品种。品比试验结果表明:参试的10个品种间产量差异明显,其中,远杂9847和潍9902荚果产量高于CK,增产幅度分别为1.55%和0.85%,但与CK差异未达到显著水平。该结果初步揭示了远杂9847和豫花9327在冀中地区种植具有良好的适应性及丰产性,同时对该地区高产花生新品种的筛选具有重要的参考价值。  相似文献   
24.
花生籽仁蛋白质含量近红外光谱模型的建立   总被引:2,自引:1,他引:1  
采用近红外漫反射光谱非破坏性分析,结合偏最小二乘法,以河北省地方花生品种为研究对象建立了花生籽仁蛋白质含量的近红外光谱模型。结果表明,对原始光谱数据采用一阶导数+变量标准化处理的方法建立的模型其校正或预测效果最佳。该模型的校正集和验证集决定系数分别为0.9245和0.9018,校正标准误和预测标准误分别为0.3601和0.4153。用该模型对16个未参与建模的花生品种进行了预测,结果表明该模型具有很好的预测能力,可以用于花生品种蛋白质含量的快速检测。  相似文献   
25.
本研究旨在筛选出抗旱性强的花生品种,为开展花生抗旱品种选育和抗旱基因的功能验证提供研究基础。在干旱胁迫及对照处理下,通过对13份花生品种生理指标和表型的测定和分析,筛选抗旱指标,鉴定品种抗旱性。结果表明,各指标间均存在不同程度的相关性,相关系数在0.070~0.683之间;13个花生品种的CDC值和D值整体趋势一致;主成分分析表明,总生物量、可溶性糖等6个公因子可反映花生抗旱性89.97%的原始数据信息量;聚类分析在阈值为5时,把13个品种分为4个类群(较强抗旱、中等抗旱、敏感和高感品种),其中L147和L149具有较强抗旱能力。试验结果表明,总生物量、相对含水量、POD、可溶性糖可作为花生抗旱性快速鉴定指标。筛选出抗旱性较强的品种为L186、L147、L221和L149。  相似文献   
26.
卡那霉素是植物遗传转化中常用的一种筛选剂。研究花生胚小叶对卡那霉素的敏感性,对建立利用卡那霉素筛选花生遗传转化的有效体系具有重要意义。以3个不同基因型花生弗落蔓生、麻油1-1和濮花23号为试验材料,通过计算胚小叶黄化率、丛生芽诱导率和生根数等,并观察外植体的生长状态,研究不同浓度卡那霉素对胚小叶生长发育、丛生芽分化和丛生芽生根阶段的影响,以期确定3个品种胚小叶各个分化阶段的适宜筛选浓度。结果表明,不同基因型花生对卡那霉素的敏感性不同,弗落蔓生、麻油1-1和濮花23号胚小叶丛生芽分化筛选浓度依次为:150mg/L、100mg/L和50mg/L;丛生芽生根筛选浓度分别为:弗落蔓生20mg/L、麻油1-1 20mg/L和濮花23号10mg/L。本研究筛选到不同品种胚小叶丛生芽分化和丛生芽生根阶段的适宜卡那霉素浓度,为以花生胚小叶为外植体的花生遗传转化阳性植株的筛选奠定了基础。  相似文献   
27.
以耐盐品种‘花育25号’为材料,通过田间小区试验,设置18.0万穴·hm~(-2)(M1)、19.6万穴·hm~(-2)(M2)、21.4万穴·hm~(-2)(M3)、23.5万穴·hm~(-2)(M4)、26.0万穴·hm~(-2)(M5)5个单粒精播播种方式下的种植密度和双粒穴播播种方式下的11.6万穴·hm~(-2)(M6)、13.0万穴·hm~(-2)(M7)、14.7万穴·hm~(-2)(M8)3个种植密度,研究种植密度和播种方式对盐碱地花生主要农艺性状、产量和品质的影响,探讨盐碱地花生适宜的种植密度和播种方式。结果显示,1)土壤盐碱胁迫较大程度地抑制了花生植株的生长发育,与非盐碱地花生相比,盐碱地花生主茎高和侧枝长明显降低,仅分别为25.6 cm和29.0 cm左右。2)单粒精播方式下,在19.6~26.0万穴·hm~(-2)范围内,主茎高和侧枝长在饱果期前随种植密度的增加显著降低;荚果膨大前和饱果期后,单粒精播方式下一、二次分枝数显著高于双粒穴播,且在M2~M4密度范围内,其基部茎长随密度增大而缩短但差异不显著。基部茎长和茎粗的变化主要发生在结荚期前,且以茎的伸长速度快于横截面积增大速度,生育后期基部茎长和茎粗均趋于稳定。3)盐碱地花生叶片和茎+叶柄光合产物快速积累期主要在花针期和荚果膨大期,叶片最大生长速率(Vm)只有茎+叶柄Vm的一半,叶片快速生长早于茎+叶柄5 d左右,且双粒穴播方式下叶片和茎+叶柄最大生长速率出现的时间(Tm)明显滞后于单粒精播方式。单粒精播方式下盐碱地花生地上部营养器官Vm随种植密度增加表现为"抛物线型"变化,M4处理下的叶片和茎+叶柄的Vm最大,分别为0.492 5 g·株-1和0.878 3 g·株-1。4)种植密度对盐碱地花生各生育时期光合产物的积累影响较为显著,但对各时期各器官中分配率的影响差异较小。盐碱地花生光合产物分配规律与非盐碱地花生基本一致,生育前期光合产物主要分配在茎和叶片等营养器官中,至饱果期约1/3以上的光合产物分配于荚果中。5)种植密度对单粒精播方式下荚果产量有显著影响,但对各处理下的籽仁可溶性糖、蛋白质、脂肪和油酸/亚油酸(O/L)等影响不大。中轻度盐碱土区,采用单粒精播的播种方式时,适宜的种植密度为19.0~23.5万株·hm~(-2)。  相似文献   
28.
采用常规杂交方法,以重要小麦条锈菌鉴别寄主Heines kolben和Struba Dickkopf与冬性小麦感病品种铭贤169杂交、自交和回交,获F1、F2和BC1代种子,根据条锈菌系的毒性谱,选用2E16单孢菌系,在铭贤169上繁殖。苗期抗性鉴定在人工控制的环境中进行。当麦苗第一片叶全展大约7cm时,用扫抹法接种,置于(9±2)℃接种间内黑暗保湿24h后转入低温温室内(温度为昼15~19℃,夜10~14℃)潜育发病,待感病品种铭贤169充分发病时调查侵染型,苗期抗性鉴定,并进行卡方检验,结果表明:供试品种 Heines kolben对条锈菌生理小种2E16的抗性由两对隐性互补基因控制;Struba Dickkopf对小种2E16的抗性由一对显性基因控制。  相似文献   
29.
低温胁迫下西瓜幼苗生理特性与冷害的关系   总被引:2,自引:0,他引:2  
以河北省目前推广的西瓜品种为材料,研究了在低温胁迫下西瓜幼苗的冷害指数及生理特性。结果表明:不同西瓜品种的冷害指数存在一定差异,在供试品种中,冷害指数最高的是重茬雄风为3,冷害指数最低的是京欣王为0.8。随着温度的降低,SOD、POD的活性和MDA的含量呈现上升的趋势。在8℃时SOD的活性与冷害指数呈极显著负相关,8℃、15℃和25℃时MDA的含量与冷害指数呈极显著正相关。  相似文献   
30.
基因芯片技术及其在植物育种上的应用   总被引:2,自引:0,他引:2  
介绍了基因芯片技术的种类、原理、特点、基本过程及在植物育种中的应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号