首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   14篇
林业   37篇
农学   12篇
基础科学   3篇
  133篇
综合类   21篇
农作物   16篇
水产渔业   12篇
畜牧兽医   76篇
园艺   6篇
植物保护   31篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   10篇
  2019年   10篇
  2018年   4篇
  2017年   9篇
  2016年   9篇
  2015年   9篇
  2014年   13篇
  2013年   21篇
  2012年   30篇
  2011年   16篇
  2010年   11篇
  2009年   21篇
  2008年   20篇
  2007年   30篇
  2006年   18篇
  2005年   11篇
  2004年   17篇
  2003年   15篇
  2002年   15篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1977年   1篇
  1970年   1篇
  1939年   2篇
排序方式: 共有347条查询结果,搜索用时 532 毫秒
301.
302.
Polycarpol, sitosterol and sitosterol-3-O-β-D-glucoside isolated for the first time from Piptostigma preussi (Annonaceae) occur regularly in some Annonaceae such as Piptostigma genus. Polycarpol exhibits interesting antitrypanosomal activity with an ED50 value of 5.11 µM on Trypanosoma brucei cells. Moreover, it inhibits T. brucei glycolytic enzymes GAPDH and PFK with IC50 values of 650 and 180 µM respectively.  相似文献   
303.
304.
The current study is based on a long-term field experiment that was conducted at the Rauischholzhausen field station of the University of Giessen (Germany). It includes six different crop rotation systems (CRSs), three mineral nitrogen (N) fertilization treatments and the varying annual weather conditions (AWCs) over 25 years (1993–2017). To ensure new insight into wheat cropping systems that have high yield stability, the dataset was assessed using different methods of stability analysis, including eco-valence, biplot and risk analysis. The results show that the factors which influence grain yield variation in winter wheat can be ranked in the following order: (1) N fertilization; (2) AWC; and (3) CRS. Compared to winter rye as the preceding cereal crop, field bean as the preceding legume crop had a clearly positive effect on the grain yield stability of winter wheat. Furthermore, the higher N fertilization level led to more stable grain yields of winter wheat for all investigated CRSs. Overall, in this study, crop rotation and N fertilization had a high impact on the yield stability of winter wheat. These are important factors to consider in agronomic management decisions under the increasingly difficult environmental conditions caused by climate change.  相似文献   
305.
This study reports and analyzes nutrient balances in experimental vegetable production systems of the two West African cities of Tamale (Ghana) and Ouagadougou (Burkina Faso) over a two‐year period comprising thirteen and eleven crops, respectively. Nutrient‐use efficiency was also calculated. In Tamale and Ouagadougou, up to 2% (8 and 80 kg N ha?1) of annually applied fertilizer nitrogen were leached. While biochar application or wastewater irrigation on fertilized plots did not influence N leaching in both cities, P and K leaching, as determined with ion‐absorbing resin cartridges, were reduced on biochar‐amended plots in Tamale. Annual nutrient balances amounted to +362 kg N ha?1, +217 kg P ha?1, and –125 kg K ha?1 in Tamale, while Ouagadougou had balances of up to +692 kg N ha?1, +166 kg P ha?1, and –175 kg K ha?1 y?1. Under farmers' practice of fertilization, agronomic nutrient‐use efficiencies were generally higher in Tamale than in Ouagadougou, but declined in both cities during the last season. This was the result of the higher nutrient inputs in Ouagadougou compared to Tamale and relatively lower outputs. The high N and P surpluses and K deficits call for adjustments in local fertilization practices to enhance nutrient‐use efficiency and prevent risks of eutrophication.  相似文献   
306.
Purpose

The effect of uncontrolled grazing and unpredictable rainfall pattern on future changes in soil properties and processes of savanna ecosystems is poorly understood. This study investigated how rainfall amount at a gradient of 50%, 100%, and 150% would influence soil bulk density (ρ), volumetric water content (θv), carbon (C), and nitrogen (N) contents in grazed (G) and ungrazed (U) areas.

Materials and methods

Rainfall was manipulated by 50% reduction (simulating drought—50%) and 50% increase (simulating abundance—150%) from the ambient (100%) in both G and U areas. Plots were named by combining the first letter of the area followed by rainfall amount, i.e., G150%. Samples for soil ρ, C, and N analysis were extracted using soil corer (8 cm diameter and 10 cm height). Real-time θv was measured using 5TE soil probes (20 cm depth). The EA2400CHNS/O and EA2410 analyzers were used to estimate soil C and N contents respectively.

Results and discussion

The interaction between grazing and rainfall manipulation increased θv and C but decreased N with no effect on ρ and C:N ratio. Rainfall reduction (50%) strongly affected most soil properties compared to an increase (150%). The highest (1.241?±?0.10 g cm?3) and lowest (1.099?±?0.05 g cm?3) ρ were in the G50% and U150% plots respectively. Soil θv decreased by 34.0% (grazed) and 25.8% (ungrazed) due to drought after rainfall cessation. Soil ρ increased with grazing due to trampling effect, therefore reducing infiltration of rainwater and soil moisture availability. Consequently, soil C content (11.45%) and C:N ratio (24.68%) decreased, whereas N increased (7.8%) in the grazed plots due to reduced C input and decomposition rate.

Conclusions

The combined effect of grazing and rainfall variability will likely increase soil θv, thereby enhancing C and N input. Grazing during drought will induce water stress that will destabilize soil C and N contents therefore affecting other soil properties. Such changes are important in predicting the response of soil properties to extreme rainfall pattern and uncontrolled livestock grazing that currently characterize most savanna ecosystems.

  相似文献   
307.
Traditionally, the selective preservation of certain recalcitrant organic compounds and the formation of recalcitrant humic substances have been regarded as an important mechanism for soil organic matter (SOM) stabilization. Based on a critical overview of available methods and on results from a cooperative research program, this paper evaluates how relevant recalcitrance is for the long‐term stabilization of SOM or its fractions. Methodologically, recalcitrance is difficult to assess, since the persistence of certain SOM fractions or specific compounds may also be caused by other stabilization mechanisms, such as physical protection or chemical interactions with mineral surfaces. If only free particulate SOM obtained from density fractionation is considered, it rarely reaches ages exceeding 50 y. Older light particles have often been identified as charred plant residues or as fossil C. The degradability of the readily bioavailable dissolved or water‐extractable OM fraction is often negatively correlated with its content in aromatic compounds, which therefore has been associated with recalcitrance. But in subsoils, dissolved organic matter aromaticity and biodegradability both are very low, indicating that other factors or compounds limit its degradation. Among the investigated specific compounds, lignin, lipids, and their derivatives have mean turnover times faster or similar as that of bulk SOM. Only a small fraction of the lignin inputs seems to persist in soils and is mainly found in the fine textural size fraction (<20 µm), indicating physico‐chemical stabilization. Compound‐specific analysis of 13C : 12C ratios of SOM pyrolysis products in soils with C3‐C4 crop changes revealed no compounds with mean residence times of > 40–50 y, unless fossil C was present in substantial amounts, as at a site exposed to lignite inputs in the past. Here, turnover of pyrolysis products seemed to be much longer, even for those attributed to carbohydrates or proteins. Apparently, fossil C from lignite coal is also utilized by soil organisms, which is further evidenced by low 14C concentrations in microbial phospholipid fatty acids from this site. Also, black C from charred plant materials was susceptible to microbial degradation in a short‐term (60 d) and a long‐term (2 y) incubation experiment. This degradation was enhanced, when glucose was supplied as an easily available microbial substrate. Similarly, SOM mineralization in many soils generally increased after addition of carbohydrates, amino acids, or simple organic acids, thus indicating that stability may also be caused by substrate limitations. It is concluded that the presented results do not provide much evidence that the selective preservation of recalcitrant primary biogenic compounds is a major SOM‐stabilization mechanism. Old SOM fractions with slow turnover rates were generally only found in association with soil minerals. The only not mineral‐associated SOM components that may be persistent in soils appear to be black and fossil C.  相似文献   
308.
309.

Background

We used 2-deoxy-2-[18F] fluoro-D-glucose (FDG) positron emission tomography (PET) to evaluate the FDG uptake in patients with advanced and/or metastatic soft tissue sarcoma (STS) undergoing therapy with Ecteinascidin-743 (ET-743, Trabectedin, Yondelis™).

Patients and Methods

The pilot study included nine patients with metastatic STS receiving a minimum of one cycle of treatment with trabectedin. Patients were examined using PET prior to onset of therapy and after completion of one or three cycles of trabectedin. Restaging according to Response Evaluation Criteria in Solid Tumours (RECIST) was performed in parallel using computed tomography (CT) and/or magnetic resonance imaging (MRI) and served for reference.

Results

Clinical outcome of nine evaluable patients was as follows: one patient with partial remission (PR), three patients with stable disease (SD), and five patients with progressive disease (PD). A more than 40% decrease of the standardized uptake value (SUV) of sequential PET examination could be demonstrated for the responding patient (PR), whereas patients with SD or PD showed a stable SUV, but no increase in SUV.

Conclusion

To our knowledge, this is the first small series of patients being treated with trabectedin and monitored using sequential PET imaging demonstrating SUV stabilization in nearly all monitored patients.  相似文献   
310.
In three trials carried out over a period of 24 years, open-pollinated seedlings of Malus sieboldii and M. sargentii and 22 apomictic rootstock selections with either M. sieboldii, M. sargentii or M. hupehensis in their parentage were examined for apple proliferation (AP) resistance in comparison to clonal M. x domestica-based rootstocks M 9, M 11, M 13, stocks of the B (Budagovski) and the Polish P series and M. robusta seedlings. Following experimental inoculation or natural infection the Golden Delicious-grafted trees on most of the M. sieboldii-derived progenies showed a high level of AP resistance expressed by low cumulative disease indices, a high percentage of non or little affected trees, low incidence of the small fruit symptom and non or little effect on vigour. Trees on M 9 and M 11, B 118 and M. robusta seedlings were moderately susceptible while trees on progenies with M. sargentii and M. hupehensis parentage, rootstocks of the P series, B 9, B 490 and M 13 proved highly susceptible. The screening also showed that rootstocks with M. sieboldii and M. sargentii parentage are often highly susceptible to latent apple viruses. Trees on most of the M. sieboldii-based progenies were more vigorous than trees on standard stock M 9, whereas the vigour of some progenies from selections with M. sargentii parentage was in the range of M 9 or even lower. Productivity was often correlated with the vigour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号